Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
302 result(s) for "Zheng, Zhiyu"
Sort by:
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
As photothermal conversion agents, carbon nanomaterials are widely applied in polymers for light-triggered shape memory behaviors on account of their excellent light absorption. However, they are usually derived from non-renewable fossil resources, which go against the demand for sustainable development. Biomass-derived carbon nanomaterials are expected as alternatives if they are designed with good dispersibility as well as splendid photothermal properties. Up to date, very few researches focused on this area. Herein, we report a novel light-triggered shape memory composite by incorporating renewable biomass-derived carbon nanomaterials into acrylate polymers without deep purification and processing. These functionalized carbon nanomaterials not only have stable dispersion in polymers as fillers, but also can endow the polymers with excellent and stable thermal and photothermal responsive properties in biological friendly environment. With the introduction of biomass-derived carbon nanomaterials, the mechanical properties of the composites are also further enhanced with the formation of hydrogen bonding between the carbon nanomaterials and the polymers. Notably, the doping of 1% carbon nanomaterials endows the polymer with sufficient hydrogen bonds that not only exhibit excellent thermal and photothermal responsive properties, but also with enough space for the motion of chains. These properties make such composite a promising and safe candidate for shape memory applications, which provide a new avenue in smart fabrics or intelligent soft robotics.
Dimensionality-tailored pure organic semiconductor with high hole mobility for low-dose x-ray imaging
Pure-organic semiconductors have attracted broad interest in tissue-equivalent and biocompatible X-ray sensors, while their low-dose X-ray imaging capability still suffers from poor charge transport properties. Here, we report a dimensionality tailoring method to enhance hole transport in pure-organic semiconductors, enabling highly stable and low-dose X-ray detection and imaging without toxic elements such as Pb or Hg. By substituting the -CN group in 4-hydroxycyanobenzene (4HCB, HO-C 6 H 4 -CN) with a -COOCH 3 group, we transform the two-dimensional (2D) structure into a three-dimensional (3D) 4-methyl hydroxybenzoate (4MHB, HO-C 6 H 4 -COOCH 3 ) crystal featuring enhanced intermolecular π-π stacking. This structural reconfiguration yields a high hole mobility of 19.91 cm 2  V −1 s −1 and an ultralow dark current drift of 1.14 × 10 −10  nA cm −1 s −1 V −1 at 100 V mm −1 . The superior charge transport facilitated by stronger π-π interactions enables stable X-ray detection with a detection limit as low as 4.22 nGy air s −1 and high-resolution imaging at 1.6 lp mm −1 under low-dose irradiation (58.76 μGy air s −1 ). This work demonstrates a molecular tailoring strategy to modulate the structural dimensionality and the charge transport path of pure-organic semiconductors, advancing tissue-equivalence and biocompatible X-ray imagers toward high-resolution and low-dose operation. The charge transport properties of organic semiconductors limit their low-dose X-ray imaging capability. Here, authors report 3D 4-methyl hydroxybenzoate for enhanced π-π stacking, achieving stable X-ray detection with detection limit of 4.22 nGy air s −1 and high-resolution imaging at 1.6 lp mm −1 .
Incorporation of Biomass-Based Carbon Nanoparticles into Polysulfone Ultrafiltration Membranes for Enhanced Separation and Anti-Fouling Performance
Functionalized carbon nanomaterials are considered to be an efficient modifier for ultrafiltration membranes with enhanced performance. However, most of the reported carbon nanomaterials are derived from unsustainable fossil fuels, while an extra modification is often essential before incorporating the nanomaterials in membranes, thus inevitably increasing the cost and complexity. In this work, novel functionalized biomass-based carbon nanoparticles were prepared successfully from agricultural wastes of corn stalks through simple one-step acid oxidation method. The obtained particles with the size of ~45 nm have excellent dispersibility in both aqueous and dimethyl formamide solutions with abundant oxygen-containing groups and negative potentials, which can endow the polysulfone ultrafiltration membranes with enhanced surface hydrophilicity, larger pore size, more finger-like pores, and lower surface roughness. Therefore, the separation and anti-fouling performance of membranes are improved simultaneously. Meanwhile, the addition of 0.4 wt% nanoparticles was proved to be the best condition for membrane preparation as excess modifiers may lead to particle aggregation and performance recession. It is expected that these biomass-based carbon nanoparticles are potential modifying materials for improving the separation performance and anti-fouling property of the membranes with great simplicity and renewability, which pave a new avenue for membrane modification and agricultural waste utilization.
Recyclable Magnesium-Modified Biochar Beads for Efficient Removal of Phosphate from Wastewater
Although ball milling is effective for biochar modification with metal oxides for efficient phosphate removal, the recyclability of the adsorbent as well as the precursors for modification, still need to be optimized. Herein, a magnesium-modified biochar was first prepared with the precursor of MgCl2·6H2O through the solvent-free ball milling method. After that, recyclable biochar beads were fabricated with the introduction of sodium alginate and Fe3O4. The beads were proved to have excellent adsorption performance for phosphate with a saturated capacity of 53.2 mg g−1, which is over 12 times higher than that of pristine biochar beads. Although the particle size reduction, surface area, and O-containing group increments after milling are beneficial for adsorption, the remarkable promotion in performance should mainly result from the appropriate formation of magniferous crystals on biochar, which greatly accelerates the electrostatic interactions as well as precipitation for adsorption. The beads also exhibited excellent magnetism-driven recyclability, which greatly avoids secondary contamination and broadens the application field of the adsorbent.
Effects of L-PBF Scanning Strategy and Sloping Angle on the Process Properties of TC11 Titanium Alloy
TC11 titanium alloy is widely used in aerospace. To investigate the production of TC11 titanium alloy parts of high quality and performance, this paper adopts the Laser powder bed fusion (L-PBF) technique to prepare TC11 alloy specimens. We analyze in detail the effects of scanning strategy and forming angle on the forming quality and performance of TC11 alloy through a combination of theory and experiment. The results show that the upper surface quality of the strip-scanned molded parts is the highest, and the upper surface quality is better than that of the side surface under different scanning strategies. The fusion channel lap and surface adhesion powder were the main factors affecting the surface roughness. With increases in the forming angle, the surface roughness of the overhanging surface gradually decreases and the hardness gradually increases. The surface quality and hardness of the specimen are optimal when the forming angle is 90°. The research results provide the theoretical basis and technical support for L-PBF forming of TC11 titanium alloy parts.
Effects of Upstream Lakes on Dissolved Organic Matter in Streams
We examined the effects of upstream lakes on dissolved organic matter (DOM) quantity and the absorbance of ultraviolet (UV) radiation in the streams of northern Michigan. We assessed DOM concentration and absorbance in 15 streams with upstream lakes and 17 streams without upstream lakes located in the same geographic region in May and August 2003. In addition, we estimated watershed land cover and morphology to assess the possibility that other landscape variables could account for DOM differences between the two stream types. The concentration of dissolved organic carbon, its UVB absorbance, and its molar absorbtivity (absorbance per unit carbon) were all significantly lower in streams with upstream lakes than in streams with no lakes. Strong predictive relationships existed between upstream watershed metrics and stream DOM properties, but varied by season and the presence of upstream lakes. DOM quantity and UV-absorbing ability were related to different watershed metrics, with DOM quantity being strongly related to terrestrial watershed metrics, whereas UV-absorbing ability was most strongly related to percent water surface area. Upstream lakes strongly influence downstream DOM potentially because of their long water residence times, which could increase opportunities for DOM processing. Upstream lakes represent a strong landscape predictor of stream DOM properties that is not directly tied to terrestrial DOM sources and processing.
Modification and Application of Bamboo-Based Materials: A Review—Part II: Application of Bamboo-Based Materials
Bamboo, with its inherently porous composition and exceptional renewability, stands as a symbolic embodiment of sustainability. The imperative to fortify the utilization of bamboo-based materials becomes paramount for future developments. These materials not only find direct applications in the construction and furniture sectors but also exhibit versatility in burgeoning domains such as adsorption materials and electrode components, thereby expanding their consequential influence. This comprehensive review meticulously delves into both their explicit applications and the nuanced panorama of derived uses, thereby illuminating the multifaceted nature of bamboo-based materials. Beyond their current roles, these materials hold promise for addressing environmental challenges and serving as eco-friendly alternatives across diverse industries. Lastly, we provide some insights into the future prospects of bamboo-based materials, which are poised to lead the way in further development. In conclusion, bamboo-based materials hold immense potential across diverse domains and are set to play an increasingly pivotal role in sustainable development.
Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst
The electrochemical nitrate reduction reaction (NO 3 RR) to ammonia under ambient conditions is a promising approach for addressing elevated nitrate levels in water bodies, but the progress of this reaction is impeded by the complex series of chemical reactions involving electron and proton transfer and competing hydrogen evolution reaction. Therefore, it becomes imperative to develop an electro-catalyst that exhibits exceptional efficiency and remarkable selectivity for ammonia synthesis while maintaining long-term stability. Herein the magnetic biochar (Fe-C) has been synthesized by a two-step mechanochemical route after a pyrolysis treatment (450, 700, and 1000 °C), which not only significantly decreases the particle size, but also exposes more oxygen-rich functional groups on the surface, promoting the adsorption of nitrate and water and accelerating electron transfer to convert it into ammonia. Results showed that the catalyst (Fe-C-700) has an impressive NH 3 production rate of 3.5 mol·h −1 ·g cat −1 , high Faradaic efficiency of 88%, and current density of 0.37 A·cm −2 at 0.8 V vs. reversible hydrogen electrode (RHE). In-situ Fourier transform infrared spectroscopy (FTIR) is used to investigate the reaction intermediate and to monitor the reaction. The oxygen functionalities on the catalyst surface activate nitrate ions to form various intermediates (NO 2 , NO, NH 2 OH, and NH 2 ) and reduce the rate determining step energy barrier (*NO 3 → *NO 2 ). This study presents a novel approach for the use of magnetic biochar as an electro-catalyst in NO 3 RR and opens the road for solving environmental and energy challenges.
Modification and Application of Bamboo-Based Materials: A Review—Part I: Modification Methods and Mechanisms
In light of continual societal advancement and escalating energy consumption, the pursuit of green, low-carbon, and environmentally friendly technologies has become pivotal. Bamboo, renowned for its diverse advantages encompassing swift growth, ecological compatibility, robust regenerative properties, commendable mechanical characteristics, heightened hardness, and abundant availability, has discovered applications across various domains, including furniture and construction. Nevertheless, natural bamboo materials are plagued by inherent limitations, prominently featuring suboptimal hydrophobicity and vulnerability to fracture, thereby constraining their broad-scale application. Thus, the paramount concern is to enhance the performance of bamboo materials through modification. However, prevailing reviews of bamboo modification predominantly concentrate on physical or chemical approaches, resulting in a conspicuous absence of a comprehensive overview of bamboo modification techniques. This review explores an array of bamboo treatment modalities and delivers a valuable assessment of bamboo modification, offering significant guidance for forthcoming bamboo enhancement and utilization endeavors.
A Bi.sub.2O.sub.3-TiO.sub.2 Heterojunction for Triple-Modality Cancer Theranostics
Purpose: Owing to the limitations of single-mode cancer treatments, combination therapies have attracted much attention. However, constructing a platform for combination therapies in a simple and effective way and improving the overall treatment effect remains a challenge. Our aim was to combine sonodynamic therapy, radiotherapy and chemotherapy together and improve therapeutic outcomes within one nanoplatform. Methods: In this work, we sought to exploit the properties of nanoscale heterojunctions to this end. A multifunctional [Bi.sub.2][O.sub.3]-Ti[O.sub.2] @polydopamine-doxorubicin (BTPD) nanoparticle platform was constructed as an anti-cancer theranostic. Under ultrasound irradiation, the [Bi.sub.2][O.sub.3]-Ti[O.sub.2] core can generate singlet oxygen to damage tumor cells. Meanwhile, the high-Z [Bi.sub.2][O.sub.3] can attenuate the energy of X-rays and scatter secondary electrons to enhance radiation damage in the tumor. A thin coating of polydopamine (PDA) increases the biocompatibility but also gives the particles the ability for photoacoustic imaging. Doxorubicin, a DNA repair inhibitor which can hinder tumor recovery from radiation damage, was loaded onto the PDA. Results: A comprehensive series of in vitro and in vivo assays demonstrated that the nanoparticles were effectively taken up into cancer cells, where they could induce ROS production and cause cell death. In vivo, this led to a marked reduction in tumor volume in a murine 4T1 cancer model. Conclusion: The formulations developed here have significant potential for future investigation and exploration in the treatment of cancer. Keywords: sonodynamic therapy, radiosensitization, DNA repair inhibition, combination therapy