Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Zhou, Qin-Rong"
Sort by:
Chemical Constituents from Euphorbia kansui
In this research, a new triterpenoid, tirucalla-8,24-diene-3β,11β-diol-7-one (1), and eupha-8,24-diene-3β,11β-diol-7-one (2), which was isolated from Euphorbia kansui for the first time, together with twelve other known compounds (3–14), were isolated from the ethyl acetate extract of Euphorbia kansui. Their structures were elucidated based on High resolution electrospray ionization mass spectrometry (HR-ESI-MS), Infrared Spectroscopy (IR), 1D and 2D Nuclear Magnetic Resonance (NMR) data. Both constituents 1 and 2 exhibited moderate cytotoxicity against colon cancer HCT-116, gastric cancer MKN-45 and breast cancer MCF-7.
Exploring Liquid Impact Forming Technology of the Thin-Walled Tubes
In order to realize the objective of lightweight manufacturing, the forming methods of thin-walled tubes are studied in this paper. Liquid impact forming, a compound forming technique of thin-walled tube using stamping and hydroforming processes, is presented in order to reduce the forming difficulty and increase the forming efficiency. A simple experimental tooling, including stamping device and tube hydroforming apparatus is developed. Forming experiments of stamping and liquid impact forming processes in rectangular cross-section dies are performed for 304 stainless steel tubes. The results of experiments show that the liquid impact forming technology is feasible, and it will be widely applied in the future.
Wogonin Inhibits Growth of Mantle Cell Lymphoma Cells through Nuclear Factor-κB Signaling Pathway
To the Editor: Mantle cell lymphoma (MCL) is a non-Hodgkin's lymphoma (NHL) subtype and considered one of the most aggressive lyrnphomas with worse prognosis than other subtypes ofN H L. Despite the great progress over the last several decades, treatment of MCL still has troubles in survival, relapse, and drug resistance.
Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway
Aim: The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. 'The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. Methods: Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiotogical recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). Results: Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. Conclusion: In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.
Novel Bartonella Species in Insectivorous Bats, Northern China
Bartonella species are emerging human pathogens. Bats are known to carry diverse Bartonella species, some of which are capable of infecting humans. However, as the second largest mammalian group by a number of species, the role of bats as the reservoirs of Bartonella species is not fully explored, in term of their species diversity and worldwide distribution. China, especially Northern China, harbors a number of endemic insectivorous bat species; however, to our knowledge, there are not yet studies about Bartonella in bats in China. The aim of the study was to investigate the prevalence and genetic diversity of Bartonella species in bats in Northern China. Bartonella species were detected by PCR amplification of gltA gene in 25.2% (27/107) bats in Mengyin County, Shandong Province of China, including 1/3 Rhinolophus ferrumequinum, 2/10 Rhinolophus pusillus, 9/16 Myotis fimbriatus, 1/5 Myotis ricketti, 14/58 Myotis pequinius. Phylogenetic analysis showed that Bartonella species detected in bats in this study clustered into ten groups, and some might be novel Bartonella species. An association between Bartonella species and bat species was demonstrated and co-infection with different Bartonella species in a single bat was also observed. Our findings expanded our knowledge on the genetic diversity of Bartonella in bats, and shed light on the ecology of bat-borne Bartonella species.
Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media
Electrocatalytic water splitting via hydrogen evolution reaction (HER) represents one of promising strategies to gain hydrogen energy. In current work, self-supporting Co 0.85 Se nanosheets network anchored on Co plate (Co 0.85 Se NSs@Co) is fabricated by employing easily tailorable Co metal plate as the source conductive substrate. The scalable dealloying and hydrothermal selenization strategy was employed to build one layer of three dimensional interlinking Co 0.85 Se nanosheets network on the surface of Co plate. Benefiting from bulky integrated architecture and rich active sites, the as-made Co 0.85 Se NSs@Co exhibits superior electrocatalytic activity and long-term catalytic durability toward HER. It only requires lower overpotentials of 121 and 162 mV to drive the current density of 10 mA·cm −2 for hydrogen evolution in 0.5 M H 2 SO 4 and 1 M KOH solution. Especially, no evident activity decay occurs upon 1,500 cycles or continuous test for 20 h at 10 mA·cm −2 in both acidic and alkaline electrolytes. With the merits of exceptional performances, scalable production, and low cost, the self-supporting Co 0.85 Se NSs@Co holds prospective application potential as stable and binder-free electrocatalysts for hydrogen generation in a wide range of electrolyte.
Synthesis of Terpineol from Alpha-Pinene Catalyzed by α-Hydroxy Acids
We report the use of five alpha-hydroxy acids (citric, tartaric, mandelic, lactic and glycolic acids) as catalysts in the synthesis of terpineol from alpha-pinene. The study found that the hydration rate of pinene was slow when only catalyzed by alpha-hydroxyl acids. Ternary composite catalysts, composed of AHAs, phosphoric acid, and acetic acid, had a good catalytic performance. The reaction step was hydrolysis of the intermediate terpinyl acetate, which yielded terpineol. The optimal reaction conditions were as follows: alpha-pinene, acetic acid, water, citric acid, and phosphoric acid, at a mass ratio of 1:2.5:1:(0.1–0.05):0.05, a reaction temperature of 70 °C, and a reaction time of 12–15 h. The conversion of alpha-pinene was 96%, the content of alpha-terpineol was 46.9%, and the selectivity of alpha-terpineol was 48.1%. In addition, the catalytic performance of monolayer graphene oxide and its composite catalyst with citric acid was studied, with acetic acid used as an additive.
Pair combinations of human monoclonal antibodies fully protected mice against bunyavirus SFTSV lethal challenge
Severe fever with thrombocytopenia syndrome (SFTS) is a viral hemorrhagic fever caused by a tick-borne virus SFTSV with a mortality rate of up to 30%. Currently, there is no vaccine or effective therapy for SFTS. Neutralizing monoclonal antibody therapy, which provides immediate passive immunity and may limit disease progression, has emerged as a reliable approach for developing therapeutic drugs for SFTS. In this study, 4 human monoclonal antibodies (hmAbs) derived from convalescent SFTS patients’ lymphocytes based on human single-chain variable fragment antibody libraries were tested for their neutralizing activities in cells and their treatment effect in animals individually and in pair combinations. The neutralization test showed that all 4 hmAbs exhibited strong neutralizing activity against SFTSV infection in vitro . The protection rate of hmAbs 4-6, 1F6, 1B2, and 4-5 against SFTSV lethal challenge in IFNAR1 -/- A129 mice are 50%, 16.7%, 83.3%, and 66.7%, respectively. Notably, the pair combination of antibodies (1B2 and 4-5, 1B2 and 1F6) that recognized distinct epitopes protected 100% of mice against SFTSV lethal challenge. In conclusion, our findings indicate that the pair combinations of hmAbs 1B2 and 4-5 or hmAbs 1B2 and 1F6 may serve as promising therapeutic drugs for treating SFTSV infection.
Pathogenic Rickettsia, Anaplasma, and Ehrlichia in Rhipicephalus microplus ticks collected from cattle and laboratory hatched tick larvae
Background The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens including Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in the order Rickettsiales in ticks from Yueyang, a prefecture-level city of Hunan Province in Sothern China, and assess the potentiality of transovarial transmission of these rickettsial organisms. Methods Ticks were collected from cattle in a farm in Yueyang City and the tick DNA was used as template to amplify the htrA, rrs, gltA, ompA and ompB genes of Rickettsia as well as rrs and groEL genes of Anaplasma and Ehrlichia. Results All ticks (465) collected were the cattle tick, Rhipicephalus microplus. PCR showed the minimum infection rate (MIR) was 1.5% (7/465) for Candidatus Rickettsia xinyangensis, 1.9% (9/465) for C. Anaplasma boleense, 1.3% (6/465) for Anaplasma platys, 0.6% (3/465) for A. marginale, and 1.17% (2/465) for each of A. bovis, Ehrlichia minasensis, and a non-classified Ehrlichia sp. A human pathogen, C. Rickettsia xinyangensis and A. platys were detected in 100% (3/3) and 33.3% (2/6) laboratory-hatched larval pools from infected females respectively. Conclusion Our study revealed a diversity of pathogenic rickettsial species in R. microplus ticks from Hunan Province suggesting a threat to people and animals in China. This study also provided the first molecular evidence for the potential transovarial transmission of C. Rickettsia xinyangensis and A. platys in R. microplus, indicating that R. microplus may act as the host of these two pathogens.
Study on Synthesizing Isobornyl Acetate/Isoborneol from Camphene Using α-Hydroxyl Carboxylic Acid Composite Catalyst
This study examined the preparation of isobornyl acetate/isoborneol from camphene using an α-hydroxyl carboxylic acid (HCA) composite catalyst. Through the study of the influencing factors, it was found that HCA and boric acid exhibited significant synergistic catalysis. Under optimal conditions, when tartaric acid–boric acid was used as the catalyst, the conversion of camphene and the gas chromatography (GC) content and selectivity of isobornyl acetate were 92.9%, 88.5%, and 95.3%, respectively. With the increase in the ratio of water to acetic acid, the GC content and selectivity of isobornol in the product increased, but the conversion of camphene decreased. The yield of isobornol was increased by adding ethyl acetate or titanium sulfate/zirconium sulfate to form a ternary composite catalyst. When a ternary complex of titanium sulfate, tartaric acid, and boric acid was used as the catalyst, the GC content of isobornol in the product reached 55.6%. Under solvent-free conditions, mandelic acid–boric acid could catalyze the hydration reaction of camphene, the GC content of isoborneol in the product reached 26.1%, and the selectivity of isoborneol was 55.9%. The HCA–boric acid composite catalyst can use aqueous acetic acid as a raw material, which is also beneficial for the reuse of the catalyst.