Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,174 result(s) for "Zimmermann, Martin"
Sort by:
Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012
Overall survival (OS) of pediatric patients with acute myeloid leukemia (AML) increased in recent decades. However, it remained unknown whether advances in first-line treatment, supportive care, or second-line therapy mainly contributed to this improvement. Here, we retrospectively analyzed outcome and clinical data of 1940 pediatric AML patients (younger than 18 years of age), enrolled in the population-based AML-BFM trials between 1987 and 2012. While 5-year probability of OS (pOS) increased from 49 ± 3% (1987–1992) to 76 ± 4% (2010–2012; p < 0.0001), probability of event-free survival only improved from 41 ± 3% (1987–1992) to 50 ± 2% (1993–1998; p = 0.02) after introduction of high-dose cytarabine/mitoxantrone, but remained stable since then. Non-response and relapse rates stayed constant despite intensified first-line therapy (p = 0.08 and p = 0.17). Reduced fatal bleedings and leukostasis translated into fewer early deaths (8.1%vs. 2.2%; p = 0.001). Strikingly, pOS after non-response (13 ± 5% (1987–1992) vs. 43 ± 7% (2005–2010); p < 0.0001) or relapse (19 ± 4% vs. 45 ± 4%; p < 0.0001) improved. After 1999, more relapsed or refractory patients underwent hematopoietic stem cell transplantation (HSCT) with increased pOS after HSCT (29 ± 5% (1993–1998) vs. 50 ± 4% (2005–2010); p < 0.0001). Since efficacy of salvage therapy mainly contributed to better outcome in pediatric AML, our analysis indicates that a better allocation of patients, who cannot be cured with conventional chemotherapy, to an early “salvage-like” therapy is necessary.
In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass
A combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 10 2 to 10 3  K s −1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states – they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems. The competition between the formation of different phases and their kinetics need to be clearly understood to make materials with on-demand and multifaceted properties. Here, the authors reveal, by a combination of complementary in situ techniques, the mechanism of a Cu-Zr-Al metallic glass’s high propensity for metastable phase formation, which is partially through a kinetic mechanism of Al partitioning.
P21.1 at PETRA III – a high-energy X-ray diffraction beamline for physics and chemistry
Beamline P21.1 at PETRA III uses high-energy photons for the investigation of materials structure by diffraction methods. The instrumentation is particularly suited for probing ordering phenomena on a local scale in chemistry and physics. A detailed description of the instrumentation and detectors for such experiments is given. The beamline supports a number of sample environments for investigations under in situ and operando conditions, e.g. cryostats, furnaces, chemical reactors. Recent examples of measurements on amorphous, single-crystalline and thin film samples are described.
Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge (2018). arXiv:1805.10342 [cond-mat]. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI , is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.
New Insights on the Electronic-Structural Interplay in LaPdSb and CePdSb Intermetallic Compounds
Multifunctional physical properties are usually a consequence of a rich electronic-structural interplay. To advance our understanding in this direction, we reinvestigate the structural properties of the LaPdSb and CePdSb intermetallic compounds using single-crystal neutron and X-ray diffraction. We establish that both compounds can be described by the non-centrosymmetric space group P63mc, where the Pd/Sb planes are puckered and show ionic order rather than ionic disorder as was previously proposed. In particular, at 300 K, the (h, k, 10)-layer contains diffuse scattering features consistent with the Pd/Sb puckered layers. The experimental results are further rationalized within the framework of DFT and DFT+ embedded DMFT methods, which confirm that a puckered structure is energetically more favorable. We also find strong correspondence between puckering strength and band topology. Namely, strong puckering removes the bands and, consequently, the Fermi surface pockets at the M point. In addition, the Pd-d band character is reduced with puckering strength. Thus, these calculations provide further insights into the microscopic origin of the puckering, especially the correspondence between the band’s character, Fermi surfaces, and the strength of the puckering.
Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia
With regard to water supply constraints, water reuse has already become an indispensable water resource. In many regions of southern Africa, so-called waste stabilisation ponds (WSP) represent a widespread method of sewage disposal. Since capacity bottlenecks lead to overflowing ponds and contamination, a concept was designed and piloted in order to upgrade a plant and reuse water in agriculture. Using a social–ecological impact assessment (SEIA), the aim of this study was to identify and evaluate intended and unintended impacts of the upgrading of an existing WSP to reuse water for livestock fodder production. For this purpose, semistructured expert interviews were conducted. In addition, a scenario analysis was carried out regarding a sustainable operation of the water reuse system. The evaluation of the impacts has shown that intended positive impacts clearly outweigh the unintended ones. The scenario analysis revealed the consequences of an inadequate management of the system and low fodder demand. Furthermore, the analysis showed that good management of such a system is of fundamental importance in order to operate the facility, protect nature and assist people. This allows subsequent studies to minimize negative impacts and replicate the concept in regions with similar conditions.
Bioanalytical Method Validations of Three Alpha1-Antitrypsin Measurement Methods Required for Clinical Sample Analysis
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin (AAT) measurement, i.e., the specific measurement of AAT protein and its associated elastase-inhibitory activity, is an integral part of assay panels for clinical studies addressing AAT deficiency. Specifically, AAT must be measured in the matrix of citrated human plasma as well as in diluted solutions with high salt concentrations obtained through bronchoalveolar lavage (BAL). Sensitive and selective measurement methods are required, as BAL has a low level of AAT. Methods: We present the validation data obtained for three AAT measurement methods. Two of them, nephelometry and the enzyme-linked immunosorbent assay, which clearly differ in their sensitivity, provide AAT protein concentrations. The third is the highly sensitive, newly developed elastase complex formation immunosorbent assay that specifically measures the inhibitory activity of AAT against its pivotal target, protease neutrophil elastase. Using samples with relevant AAT concentrations, we addressed the assays’ characteristics: accuracy, precision, linearity, selectivity, specificity, limit of quantification and short-term analyte stability Results: Overall, the three methods demonstrated low total errors, a combined measure reflecting accuracy and precision, even at low analyte concentrations of less than 0.5 µg/mL; adequate linearity over the required assay range; and acceptable selectivity and specificity. Furthermore, the short-time stability of the analyte was also demonstrated. Conclusions: All three AAT measurement methods met the acceptance criteria defined by the guidelines on bioanalytical assay validation, qualifying these methods for clinical sample analysis.
ETV6::RUNX1 Acute Lymphoblastic Leukemia: how much therapy is needed for cure?
Recent trials show 5-year survival rates >95% for ETV6 :: RUNX1 Acute Lymphoblastic Leukemia (ALL). Since treatment has many side effects, an overview of cumulative drug doses and intensities between eight international trials is presented to characterize therapy needed for cure. A meta-analysis was performed as a comprehensive summary of survival outcomes at 5 and 10 years. For drug dose comparison in non-high risk trial arms, risk group distribution was applied to split the trials into two groups: trial group A with ~70% (range: 63.5–75%) of patients in low risk (LR) (CCLSG ALL2004, CoALL 07-03, NOPHO ALL2008, UKALL2003) and trial group B with ~45% (range: 38.7–52.7%) in LR (AIEOP-BFM ALL 2000, ALL-IC BFM ALL 2002, DCOG ALL10, JACLS ALL-02). Meta-analysis did not show evidence of heterogeneity between studies in trial group A LR and medium risk (MR) despite differences in treatment intensity. Statistical heterogeneity was present in trial group B LR and MR. Trials using higher cumulative dose and intensity of asparaginase and pulses of glucocorticoids and vincristine showed better 5-year event-free survival but similar overall survival. Based on similar outcomes between trials despite differences in therapy intensity, future trials should investigate, to what extent de-escalation is feasible for ETV6 :: RUNX1 ALL.
Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover
The p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2 [nuclear receptor coactivator (NCOA)2], and SRC-3 [amplified in breast cancer 1 (AIB1)/NCOA3] are key pleiotropic “master regulators” of transcription factor activity necessary for cancer cell proliferation, survival, metabolism, and metastasis. SRC overexpression and overactivation occur in numerous human cancers and are associated with poor clinical outcomes and resistance to therapy. In prostate cancer (PC), the p160 SRCs play critical roles in androgen receptor transcriptional activity, cell proliferation, and resistance to androgen deprivation therapy. We recently demonstrated that the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger (POZ) domain protein (SPOP) interacts directly with SRC-3 and promotes its cullin 3-dependent ubiquitination and proteolysis in breast cancer, thus functioning as a potential tumor suppressor. Interestingly, somatic heterozygous missense mutations in the SPOP substrate-binding cleft recently were identified in up to 15% of human PCs (making SPOP the gene most commonly affected by nonsynonymous point mutations in PC), but their contribution to PC pathophysiology remains unknown. We now report that PC-associated SPOP mutants cannot interact with SRC-3 protein or promote its ubiquitination and degradation. Our data suggest that wild-type SPOP plays a critical tumor suppressor role in PC cells, promoting the turnover of SRC-3 protein and suppressing androgen receptor transcriptional activity. This tumor suppressor effect is abrogated by the PC-associated SPOP mutations. These studies provide a possible explanation for the role of SPOP mutations in PC, and highlight the potential of SRC-3 as a therapeutic target in PC.