Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Zuo, Yunlan"
Sort by:
Loss-induced quantum nonreciprocity
2024
Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a resource for generating nonreciprocal quantum correlations? Here, we take a counterintuitive stance by engineering loss to generate a vital form of nonreciprocal quantum correlations, termed
nonreciprocal photon blockade
. We examine a dissipative three-cavity system comprising two nonlinear cavities and a linear cavity. The interplay of loss and nonlinearity leads to a robust nonreciprocal single- and two-photon blockade, facilitated by destructive quantum interference. Furthermore, we demonstrate the tunability of this nonreciprocal photon blockade by manipulating the relative phase between the two nonlinear cavities. Remarkably, this allows for the reversal of the direction of nonreciprocity. Our study not only sheds a light on the concept of loss-engineered quantum nonreciprocity but also opens up a pathway for the design of quantum nonreciprocal photonic devices.
Journal Article
Nonlinear multi-frequency phonon lasers with active levitated optomechanics
2023
Phonon lasers, which exploit coherent amplifications of phonons, are a means to explore nonlinear phononics, image nanomaterial structures and operate phononic devices. Recently, a phonon laser governed by dispersive optomechanical coupling has been demonstrated by levitating a nanosphere in an optical tweezer. Such levitated optomechanical devices, with minimal noise in high vacuum, can allow flexible control of large-mass objects without any internal discrete energy levels. However, it is challenging to achieve phonon lasing with levitated microscale objects because optical scattering losses are much larger than at the nanoscale. Here we report a nonlinear multi-frequency phonon laser with a micro-size sphere, which is governed by dissipative coupling. The active gain provided by a Yb3+-doped system plays a key role. It achieves three orders of magnitude for the amplitude of the fundamental-mode phonon lasing, compared with the passive device. In addition, nonlinear mechanical harmonics can emerge spontaneously above the lasing threshold. Furthermore, we observe coherent correlations of phonons for both the fundamental mode and its harmonics. Our work drives the field of levitated optomechanics into a regime where it becomes feasible to engineer collective motional properties of typical micro-size objects.Sufficient optical gain provided by Yb3+ doping allows phonon lasing from a levitated optomechanical system at the microscale, which exhibits strong mechanical amplitudes and nonlinear mechanical harmonics above the lasing threshold.
Journal Article
Single-cavity loss-enabled nanometrology
2024
Optical monitoring of the position and alignment of objects with a precision of only a few nanometres is key in applications such as smart manufacturing and force sensing. Traditional optical nanometrology requires precise nanostructure fabrication, multibeam interference or complex postprocessing algorithms, sometimes hampering wider adoption of this technology. Here we show a simplified, yet robust, approach to achieve nanometric metrology down to 2 nm resolution that eliminates the need for any reference signal for interferometric measurements. We insert an erbium-doped quartz crystal absorber into a single Fabry–Pérot cavity with a length of 3 cm and then induce exceptional points by matching the optical loss with the intercavity coupling. We experimentally achieve a displacement response enhancement of 86 times compared with lossless methods, and theoretically argue that an enhancement of over 450 times, corresponding to subnanometre resolution, may be achievable. We also show a fivefold enhancement in the signal-to-noise ratio, thus demonstrating that non-Hermitian sensors can lead to improved performances over the Hermitian counterpart.
A 2 nm displacement resolution of a centimetre-sized object in a 3 cm cavity is demonstrated.
Journal Article
Loss-induced quantum nonreciprocity
2024
Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a resource for generating nonreciprocal quantum correlations? Here, we take a counterintuitive stance by engineering loss to generate a novel form of nonreciprocal quantum correlations, termed nonreciprocal photon blockade. We examine a dissipative three-cavity system comprising two nonlinear cavities and a linear cavity. The interplay of loss and nonlinearity leads to a robust nonreciprocal single- and two-photon blockade, facilitated by destructive quantum interference. Furthermore, we demonstrate the tunability of this nonreciprocal photon blockade by manipulating the relative phase between the two nonlinear cavities. Remarkably, this allows for the reversal of the direction of nonreciprocity. Our study not only sheds new light on the concept of loss-engineered quantum nonreciprocity but also opens up a unique pathway for the design of quantum nonreciprocal photonic devices.
Chiral photon blockade in the spinning Kerr resonator
2024
We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that in comparison with the static case, robust non-classical correlations against random backscattering losses can be achieved for such a quantum chiral system. Our work, extending previous works on the spontaneous breaking of optical chiral symmetry from the classical to purely quantum regimes, can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors.
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
2024
We propose a theoretical scheme to enhance the sensitivity of a quantum fiber-optical gyroscope (QFOG) via a non-Gaussian-state probe based on quadrature measurements of the optical field. The non-Gaussian-state probe utilizes the product state comprising a photon-added coherent state (PACS) with photon excitations and a coherent state CS. We study the sensitivity of the QFOG, and find that it can be significantly enhanced through increasing the photon excitations in the PACS probe. We investigate the influence of photon loss on the performance of QFOG and demonstrate that the PACS probe exhibits robust resistance to photon loss. Furthermore, we compare the performance of the QFOG using the PACS probe against two Gaussian-state probes: the CS probe and the squeezed state (SS) probe and indicate that the PACS probe offers a significant advantage in terms of sensitivity, regardless of photon loss, under the constraint condition of the same total number of input photons. Particularly, it is found that the sensitivity of the PACS probe can be three orders of magnitude higher than that of two Gaussian-state probes for certain values of the measured parameter. The capabilities of the non-Gaussian state probe on enhancing the sensitivity and resisting photon loss could have a wide-ranging impact on future high-performance QFOGs.
Nonlinear multi-frequency phonon lasers with active levitated optomechanics
2022
Phonon lasers, exploiting coherent amplifications of phonons, have been a cornerstone for exploring nonlinear phononics, imaging nanomaterial structures, and operating phononic devices. Very recently, by levitating a nanosphere in an optical tweezer, a single-mode phonon laser governed by dispersive optomechanical coupling has been demonstrated, assisted by alternating mechanical nonlinear cooling and linear heating. Such levitated optomechanical (LOM) devices, with minimal noises in high vacuum, can allow flexible control of large-mass objects without any internal discrete energy levels. However, untill now, it is still elusive to realize phonon lasing with levitated microscale objects, due to much stronger optical scattering losses. Here, by employing a Yb3+-doped active system, we report the first experiment on nonlinear multi-frequency phonon lasers with a micro-size sphere governed instead by dissipative LOM coupling. In this work, active gain plays a key role since not only 3-order enhancement can be achieved for the amplitude of the fundamental-mode phonon lasing, compared with the passive device, but also nonlinear mechanical harmonics can emerge spontaneously above the lasing threshold. Furthermore, for the first time, coherent correlations of phonons are observed for both the fundamental mode and its harmonics. Our work drives the field of LOM technology into a new regime where it becomes promising to engineer collective motional properties of typical micro-size objects, such as atmospheric particulates and living cells, for a wide range of applications in e.g., acoustic sensing, gravimetry, and inertial navigation.
Asymmetry-enhanced phase sensing via asymmetric entangled coherent states
2023
We study quantum phase sensing with an asymmetric two-mode entangled coherent state (ECS) in which the two local amplitudes have different values. We find the phenomenon of the asymmetry-enhanced phase sensing which the asymmetry can significantly increase the precise of the phase estimation. We further study the effect of decoherence induced by the photon loss on quantum phase sensing. It is shown that the asymmetric ECSs have stronger capability against decoherence over the symmetric ECSs. It is indicated that the asymmetric ECSs have obvious advantages over the symmetric ECSs in the quantum phase sensing. We also study the practical phase sensing scheme with the intensity-difference measurement, and show that the asymmetry in the asymmetric ECSs can enhance the phase sensitivity in the practical phase measurement scheme. Our work reveals the asymmetry in the asymmetric ECSs is a new quantum-sensing resource, and opens a new way to the ultra-sensitive quantum phase sensing in the presence of photon losses.
Controlling higher-order quantum nonreciprocity by spinning an optical resonator
2023
We study how to achieve, manipulate, and switch classical or quantum nonreciprocal effects of light with a spinning Kerr resonator. In particular, we show that even when there is no classical nonreciprocity (i.e., with the same mean number of photons for both clockwise and counterclockwise propagating modes), it is still possible to realize nonreciprocity of quantum correlations of photons in such a device. Also, by tuning the angular velocity and the optical backscattering strength, higher-order quantum nonreciprocity can appear, featuring qualitatively different third-order optical correlations, even in the absence of any nonreciprocity for both the mean photon number and its second-order correlations. The possibility to switch a single device between a classical isolator and a purely quantum directional system can provide more functions for nonreciprocal materials and new opportunities to realize novel quantum effects and applications, such as nonreciprocal multi-photon blockade, one-way photon bundles, and backaction-immune quantum communications.
Loss-Induced Quantum Revival
2022
Conventional wisdom holds that quantum effects are fragile and can be destroyed by loss. Here, contrary to general belief, we show how to realize quantum revival of optical correlations at the single-photon level with the help of loss. We find that, accompanying loss-induced transparency of light in a nonlinear optical-molecule system, quantum suppression and revival of photonic correlations can be achieved. Specifically, below critical values, adding loss into the system leads to suppressions of both optical intensity and its non-classical correlations; however, by further increasing the loss beyond the critical values, quantum revival of photon blockade (PB) can emerge, resulting in loss-induced switch between single-PB and two-PB or super-Poissonian light. Our work provides a strategy to reverse the effect of loss in fully quantum regime, opening up a counterintuitive route to explore and utilize loss-tuned single-photon devices for quantum technology.