Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"de Haan, Lorraine M."
Sort by:
Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens
by
Vahrmeijer, Alexander L.
,
Eggermont, Jeroen
,
de Haan, Lorraine M.
in
Adenocarcinoma
,
Aged
,
Backscattering
2017
Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States. The minority of patients can undergo curative-intended surgical therapy due to progressive disease stage at time of diagnosis. Nonetheless, tumor involvement of surgical margins is seen in up to 70% of resections, being a strong negative prognostic factor. Real-time intraoperative imaging modalities may aid surgeons to obtain tumor-free resection margins. Full-field optical coherence tomography (FF-OCT) is a promising diagnostic tool using high-resolution white-light interference microscopy without tissue processing. Therefore, we composed an atlas of FF-OCT images of malignant and benign pancreatic tissue, and investigated the accuracy with which the pathologists could distinguish these.
One hundred FF-OCT images were collected from specimens of 29 patients who underwent pancreatic resection for various indications between 2014 and 2016. One experienced gastrointestinal pathologist and one pathologist in training scored independently the FF-OCT images as malignant or benign blinded to the final pathology conclusion. Results were compared to those obtained with standard hematoxylin and eosin (H&E) slides.
Overall, combined test characteristics of both pathologists showed a sensitivity of 72%, specificity of 74%, positive predictive value of 69%, negative predictive value of 79% and an overall accuracy of 73%. In the subset of pancreatic ductal adenocarcinoma patients, 97% of the FF-OCT images (n = 35) were interpreted as tumor by at least one pathologist. Moreover, normal pancreatic tissue was recognised in all cases by at least one pathologist. However, atrophy and fibrosis, serous cystadenoma and neuroendocrine tumors were more often wrongly scored, in 63%, 100% and 25% respectively.
FF-OCT could distinguish normal pancreatic tissue from pathologic pancreatic tissue in both processed as non-processed specimens using architectural features. The accuracy in pancreatic ductal adenocarcinoma is promising and warrants further evaluation using improved assessment criteria.
Journal Article
Real-world routine diagnostic molecular analysis for TP53 mutational status is recommended over p53 immunohistochemistry in B-cell lymphomas
by
Hartog, Wietske C. E. den
,
van Wezel, Tom
,
Ruano, Dina
in
B-cell lymphoma
,
Cell survival
,
Chemotherapy
2024
Previous studies in patients with mature B-cell lymphomas (MBCL) have shown that pathogenic TP53 aberrations are associated with inferior chemotherapeutic efficacy and survival outcomes. In solid malignancies, p53 immunohistochemistry is commonly used as a surrogate marker to assess TP53 mutations, but this correlation is not yet well-established in lymphomas. This study evaluated the accuracy of p53 immunohistochemistry as a surrogate marker for TP53 mutational analysis in a large real-world patient cohort of 354 MBCL patients within routine diagnostic practice. For each case, p53 IHC was assigned to one of three categories: wild type (staining 1–50% of tumor cells with variable nuclear staining), abnormal complete absence or abnormal overexpression (strong and diffuse staining > 50% of tumor cells). Pathogenic variants of TP53 were identified with a targeted next generation sequencing (tNGS) panel. Wild type p53 expression was observed in 267 cases (75.4%), complete absence in twenty cases (5.7%) and the overexpression pattern in 67 cases (18.9%). tNGS identified a pathogenic TP53 mutation in 102 patients (29%). The overall accuracy of p53 IHC was 84.5% (95% CI 80.3–88.1), with a robust specificity of 92.1% (95% CI 88.0- 95.1), but a low sensitivity of 65.7% (95% CI 55.7–74.8). These results suggest that the performance of p53 IHC is insufficient as a surrogate marker for TP53 mutations in our real-world routine diagnostic workup of MBCL patients. By using p53 immunohistochemistry alone, there is a significant risk a TP53 mutation will be missed, resulting in misevaluation of a high-risk patient. Therefore, molecular analysis is recommended in all MBCL patients, especially for further development of risk-directed therapies based on TP53 mutation status.
Journal Article
Superior survival in diffuse large B cell lymphoma of the bone with immune rich tumor microenvironment
2025
With tumor genomic and gene-expression profiling (GEP), this study investigated the immune-molecular signatures of a unique cohort of diffuse large B-cell lymphoma of the bone (bone-DLBCL), including primary bone (PB-DLBCL,
n
= 52) and polyostotic-DLBCL (
n
= 20), in comparison to nodal DLBCLs with germinal center B-cell (GCB) phenotype (nodal-DLBCL-GCB,
n
= 34). PB-DLBCL and polyostotic-DLBCL shared similar genomic profiles and transcriptomic signatures, justifying their collective analysis as bone-DLBCL. Differential incidences of
EZH2
,
HIST1H1E
, and
MYC
aberrations (
p
< 0.05) confirmed the distinct oncogenic evolution between bone-DLBCL and nodal-DLBCL-GCB. Differentially expressed genes were identified between bone-DLBCL and nodal-DLBCL-GCB (
p
< 0.001), substantiated by distinct gene-set enrichment analysis (GSEA). In contrast to a more ‘depleted’ phenotype for nodal-DLBCL-GCB, bone-DLBCL primarily exhibited an ‘intermediate/rich’ tumor microenvironment (TME) signature (
p
= 0.001), as determined by a previously published gene set. Unsupervised clustering defined two distinct groups that aligned with previously reported immune-enriched TME clusters: an ‘immune-rich’ cluster largely consisting of bone-DLBCLs (75%,
p
= 0.002) with superior survival (
p
= 0.030), and a poor-prognostic ‘immune-low’ cluster, including mostly nodal-DLBCL-GCB (61%). Single-sample (ss)GSEA showed higher scores for regulatory T cells, immunosuppressive/prolymphoma cytokines, and vascular endothelial cells in immune-rich samples (
p
< 0.001). Additionally, CIBERSORTx revealed a higher abundance of regulatory T cells and activated mast cells in the immune-rich cluster (
p
< 0.001). These findings were confirmed at protein level, where CD3 and FOXP3 immunochemistry showed significant overlap with the gene-expression data (
p
< 0.001). Conclusively, PB-DLBCL and polyostotic-DLBCL share immune-molecular TME characteristics, supporting their classification as a unified bone-DLBCL entity. The distinct immune-rich TME profile of bone-DLBCL associated with superior survival potentially shapes emerging immunomodulatory strategies
Journal Article
Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients
by
de Miranda, Noel F. C. C.
,
IJsselsteijn, Marieke E.
,
Dijkstra, Jouke
in
Alzheimer
,
Alzheimer's disease
,
Antibodies
2021
Brain iron accumulation has been found to accelerate disease progression in amyloid-β(Aβ) positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL
+
Iba1
+
-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL
+
Iba1
+
-microglia was seen in patients with high Aβ load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ.
Journal Article
The nature and identification of quantitative trait loci: a community's view
by
Farber, Charles R
,
Blankenhorn, Elizabeth P
,
Cook, Melloni
in
Agriculture
,
Animal genetics
,
Animal Genetics and Genomics
2003
This white paper by eighty members of the Complex Trait Consortium presents a community's view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?
Journal Article
A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency
by
van Bon, Bregje W
,
Bernier, Raphael A
,
Romano, Corrado
in
Autism
,
Body weight
,
Genotype & phenotype
2018
Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular inversion probe)-based targeted re-sequencing study in 3,275 individuals with intellectual disability (ID) to facilitate a genotype-first approach for 24 genes previously implicated in ID.Combining our data with data from a publicly available database, we confirmed 11 of these 24 genes to be relevant for ID. Amongst these, PHIP was shown to have an enrichment of disruptive mutations in the individuals with ID (5 out of 3,275). Through international collaboration, we identified a total of 23 individuals with PHIP mutations and elucidated the associated phenotype. Remarkably, all 23 individuals had developmental delay/ID and the majority were overweight or obese. Other features comprised behavioral problems (hyperactivity, aggression, features of autism and/or mood disorder) and dysmorphisms (full eyebrows and/or synophrys, upturned nose, large ears and tapering fingers). Interestingly, PHIP encodes two protein-isoforms, PHIP/DCAF14 and NDRP, each involved in neurodevelopmental processes, including E3 ubiquitination and neuronal differentiation. Detailed genotype-phenotype analysis points towards haploinsufficiency of PHIP/DCAF14, and not NDRP, as the underlying cause of the phenotype.Thus, we demonstrated the use of large scale re-sequencing by MIPs, followed by reverse phenotyping, as a constructive approach to verify candidate disease genes and identify novel syndromes, highlighted by PHIP haploinsufficiency causing an ID-overweight syndrome.
Journal Article
Iron-loading is a prominent feature of activated microglia in Alzheimer’s disease patients
by
De Haan, Lorraine
,
Willeke Mc Van Roon-Mom
,
Ijsselsteijn, Marieke E
in
Alzheimer's disease
,
Amyloid
,
Ferritin
2021
Abstract Brain iron accumulation has been found to accelerate disease progression in Amyloid β-positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key-players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL+Iba1+-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL+Iba1+-microglia was seen in patients with high Amyloid-β load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ. Competing Interest Statement The authors have declared no competing interest.