Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "van Hall Gerrit"
Sort by:
The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise
Energy substrates that are important to the working muscle at moderate intensities are the non-esterified fatty acids (NEFAs) taken up from the circulation and NEFAs originating from lipolysis of the intramuscular triacylglycerol (IMTAG). Moreover, NEFA from lipolysis via lipoprotein lipase (LPL) in the muscle of the very-low-density lipoproteins and in the (semi) post-prandial state chylomicrons may also contribute. In this review, the NEFA fluxes and oxidation by skeletal muscle during prolonged moderate-intensity exercise are described in terms of the integration of physiological systems. Steps involved in the regulation of the active muscle NEFA uptake include (1) increased energy demand; (2) delivery of NEFA to the muscle; (3) transport of NEFA into the muscle by NEFA transporters; and (4) activation of the NEFAs and either oxidation or re-esterification into IMTAG. The increased metabolic demand of the exercising muscle is the main driving force for all physiological regulatory processes. It elicits functional hyperemia, increasing the recruitment of capillaries and muscle blood flow resulting in increased NEFA delivery and accessibility to NEFA transporters and LPL. It also releases epinephrine that augments adipose tissue NEFA release and thereby NEFA delivery to the active muscle. Moreover, NEFA transporters translocate to the plasma membrane, further increasing the NEFA uptake. The majority of the NEFAs taken up by the active muscle is oxidized and a minor portion is re-esterified to IMTAG. Net IMTAG lipolysis occurs; however, the IMTAG contribution to total fat oxidation is rather limited compared to plasma-derived NEFA oxidation, suggesting a complex role and regulation of IMTAG utilization.
High-intensity leg cycling alters the molecular response to resistance exercise in the arm muscles
This study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.
Impaired skeletal muscle hypertrophy signaling and amino acid deprivation response in Apoe knockout mice with an unhealthy lipoprotein distribution
This study explores if unhealthy lipoprotein distribution (LPD) impairs the anabolic and amino acid sensing responses to whey-protein feeding. Thus, if impairment of such anabolic response to protein consumption is seen by the LPD this may negatively affect the skeletal muscle mass. Muscle protein synthesis (MPS) was measured by puromycin labeling in Apolipoprotein E knockout (Apoe KO), characterized by an unhealthy LPD, and wild type mice post-absorptive at 10 and 20 weeks, and post-prandial after whey-protein feeding at 20 weeks. Hypertrophy signaling and amino acid sensing mechanisms were studied and gut microbiome diversity explored. Surprisingly, whey-protein feeding did not affect MPS. p-mTOR and p-4E-BP1 was increased 2 h after whey-protein feeding in both genotypes, but with general lower levels in Apoe KO compared to wild type. At 20 weeks of age, Apoe KO had a greater mRNA-expression for SNAT2, CD98, ATF4 and GCN2 compared to wild type. These responses were not associated with gut microbiota compositional differences. Regardless of LPD status, MPS was similar in Apoe KO and wild type. Surprisingly, whey-protein did not stimulate MPS. However, Apoe KO had lower levels of hypertrophy signaling, was amino acid deprived, and had impaired amino acid sensing mechanisms.
GLUT4 and Glycogen Synthase Are Key Players in Bed Rest–Induced Insulin Resistance
To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both legs before and after a 3-h hyperinsulinemic euglycemic clamp performed 3 h after a 45-min, one-legged exercise. Blood samples were obtained from one femoral artery and both femoral veins before and during the clamp. Glucose infusion rate and leg glucose extraction during the clamp were lower after than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg. The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage.
High-Fat Overfeeding Impairs Peripheral Glucose Metabolism and Muscle Microvascular eNOS Ser1177 Phosphorylation
Abstract Context The mechanisms responsible for dietary fat-induced insulin resistance of skeletal muscle and its microvasculature are only partially understood. Objective To determine the impact of high-fat overfeeding on postprandial glucose fluxes, muscle insulin signaling, and muscle microvascular endothelial nitric oxide synthase (eNOS) content and activation. Design Fifteen non-obese volunteers consumed a high-fat (64%) high-energy (+47%) diet for 7 days. Experiments were performed before and after the diet. Stable isotope tracers were used to determine glucose fluxes in response to carbohydrate plus protein ingestion. Muscle insulin signaling was determined as well as the content and activation state of muscle microvascular eNOS. Results High-fat overfeeding impaired postprandial glycemic control as demonstrated by higher concentrations of glucose (+11%; P = 0.004) and insulin (+19%; P = 0.035). Carbohydrate plus protein ingestion suppressed endogenous glucose production to a similar extent before and after the diet. Conversely, high-fat overfeeding reduced whole-body glucose clearance (–16%; P = 0.021) and peripheral insulin sensitivity (–26%; P = 0.006). This occurred despite only minor alterations in skeletal muscle insulin signaling. High-fat overfeeding reduced eNOS content in terminal arterioles (P = 0.017) and abolished the increase in eNOS Ser1177 phosphorylation that was seen after carbohydrate plus protein ingestion. Conclusion High-fat overfeeding impaired whole-body glycemic control due to reduced glucose clearance, not elevated endogenous glucose production. The finding that high-fat overfeeding abolished insulin-mediated eNOS Ser1177 phosphorylation in the terminal arterioles suggests that impairments in the vasodilatory capacity of the skeletal muscle microvasculature may contribute to early dietary fat-induced impairments in glycemic control.
Structured supervised exercise training or motivational counselling during pregnancy on physical activity level and health of mother and offspring: FitMum study protocol
IntroductionA physically active lifestyle during pregnancy improves maternal and offspring health but can be difficult to follow. In Denmark, less than 40% of pregnant women meet physical activity (PA) recommendations. The FitMum study aims to explore strategies to increase PA during pregnancy among women with low PA and assess the health effects of PA. This paper presents the FitMum protocol, which evaluates the effects of structured supervised exercise training or motivational counselling supported by health technology during pregnancy on PA level and health of mother and offspring.Methods and analysisA single-site three-arm randomised controlled trial that aims to recruit 220 healthy, pregnant women with gestational age (GA) no later than week 15 and whose PA level does not exceed one hour/week. Participants are randomised to one of three groups: structured supervised exercise training consisting of three weekly exercise sessions, motivational counselling supported by health technology or a control group receiving standard care. The interventions take place from randomisation until delivery. The primary outcome is min/week of moderate-to-vigorous intensity PA (MVPA) as determined by a commercial activity tracker, collected from randomisation until GA of 28 weeks and 0-6 days, and the secondary outcome is gestational weight gain (GWG). Additional outcomes are complementary measures of PA; clinical and psychological health parameters in participant, partner and offspring; analyses of blood, placenta and breastmilk samples; process evaluation of interventions; and personal understandings of PA.Ethics and disseminationThe study is approved by the Danish National Committee on Health Research Ethics (# H-18011067) and the Danish Data Protection Agency (# P-2019-512). Findings will be disseminated via peer-reviewed publications, at conferences, and to health professionals via science theatre performances.Trial registration numberNCT03679130.Protocol versionThis paper was written per the study protocol version 8 dated 28 August 2019.
Signs of Glucagon Resistance After a 2-Week Hypercaloric Diet Intervention
Abstract Context Hyperglucagonemia is observed in individuals with obesity and contributes to the hyperglycemia of patients with type 2 diabetes. Hyperglucagonemia may develop due to steatosis-induced hepatic glucagon resistance resulting in impaired hepatic amino acid turnover and ensuing elevations of circulating glucagonotropic amino acids. Objective We evaluated whether glucagon resistance could be induced in healthy individuals by a hypercaloric diet intervention designed to increase hepatic fat content. Methods We recruited 20 healthy male individuals to follow a hypercaloric diet and a sedentary lifestyle for 2 weeks. Amino acid concentrations in response to infusion of glucagon were assessed during a pancreatic clamp with somatostatin and basal insulin. The reversibility of any metabolic changes was assessed 8 weeks after the intervention. Hepatic steatosis was assessed by magnetic resonance spectroscopy. Results The intervention led to increased hepatic fat content (382% [206%; 705%], P < .01). Glucagon infusion led to a decrease in the concentration of total amino acids on all experimental days, but the percentage change in total amino acids was reduced (−2.5% ± 0.5% vs −0.2% ± 0.7%, P = .015) and the average slope of the decline in the total amino acid concentration was less steep (−2.0 ± 1.2 vs −1.2 ± 0.3 μM/min, P = .016) after the intervention compared to baseline. The changes were normalized at follow-up. Conclusion Our results indicate that short-term unhealthy behavior, which increases hepatic fat content, causes a reversible resistance to the effect of glucagon on amino acid concentrations in healthy individuals, which may explain the hyperglucagonemia associated with obesity and diabetes.
Blood Lactate is an Important Energy Source for the Human Brain
Lactate is a potential energy source for the brain. The aim of this study was to establish whether systemic lactate is a brain energy source. We measured in vivo cerebral lactate kinetics and oxidation rates in 6 healthy individuals at rest with and without 90 mins of intravenous lactate infusion (36 μmol per kg bw per min), and during 30mins of cycling exercise at 75% of maximal oxygen uptake while the lactate infusion continued to establish arterial lactate concentrations of 0.89 ± 0.08, 3.9 ± 0.3, and 6.9 ± 1.3 mmol/L, respectively. At rest, cerebral lactate utilization changed from a net lactate release of 0.06 ± 0.01 to an uptake of 0.16 ± 0.07 mmol/min during lactate infusion, with a concomitant decrease in the net glucose uptake. During exercise, the net cerebral lactate uptake was further increased to 0.28 ± 0.16 mmol/min. Most 13C-label from cerebral [1-13C]lactate uptake was released as 13CO2 with 100% ± 24%, 86% ± 15%, and 87% ± 30% at rest with and without lactate infusion and during exercise, respectively. The contribution of systemic lactate to cerebral energy expenditure was 8% ± 2%, 19% ± 4%, and 27% ± 4% for the respective conditions. In conclusion, systemic lactate is taken up and oxidized by the human brain and is an important substrate for the brain both under basal and hyperlactatemic conditions.
Postabsorptive and postprandial glucose and fat metabolism in postmenopausal women with breast cancer—Preliminary data after chemotherapy compared to healthy controls
•Mechanism for metabolic changes during treatment for breast cancer remains unknown.•We examined four patients with breast cancer and four healthy controls.•Insulin was higher among patients in the fasting state (P = 0.06).•Using isotopic tracers we saw higher levels of glucose postprandially in patients (NS).•Pancreatic polypeptide was increased in patients compared to controls (P = 0.05). Breast cancer survivors are a growing population due to improved treatment. It is known that postmenopausal women treated for breast cancer may experience weight gain and increased insulin resistance, but detailed knowledge on how chemotherapy impact metabolic and endocrine mechanisms remain unknown. We performed a thorough, preliminary study to elucidate the differing mechanisms of postprandial absorption and metabolism in postmenopausal early breast cancer (EBC) patients treated with adjuvant chemotherapy compared to healthy controls. We hypothesize that chemotherapy has a negative impact on metabolism in EBC patients. We examined four postmenopausal women shortly after treatment with chemotherapy for EBC and four age-matched healthy women who served as controls using isotopic tracers during a mixed meal-test. Blood was sampled during the 240 min meal-test to examine postprandial absorption and endogenous synthesis of lipid and carbohydrate metabolites. We found that insulin concentrations were numerically higher before the meal-test in the EBC patients compared to controls (76.3 pmol/L vs 37.0 pmol/L; P = 0.06). Glucose kinetics was increased postprandial (most pronounced at 30 min, 9.46 mmol/L vs 7.33 mmol/L; P = 0.51), with no difference between the groups regarding liver glucose output. Fatty acid kinetics showed a numeric increase in oleic acid rate of appearance in BC patients, but only during the first hour after the mixed meal. There was no significant difference in VLDL-TAG synthesis between the two groups. This preliminary study is unique in using advanced tracer methods to investigate in vivo metabolism of EBC patients after chemotherapy although no statistical differences in glucose and fatty acid kinetics was seen compared to controls. However, during the first two postprandial hours, oral glucose and oleic acid appearance in the systematic circulation was elevated in the EBC patients. This could be due to changes in gastrointestinal uptake and further studies with altered set-up could provide valuable insights.
Carrageenan and insulin resistance in humans: a randomised double-blind cross-over trial
Background The potential impact of specific food additives, common in Western diets, on the risk of developing type 2 diabetes is not well understood. This study focuses on carrageenan, a widely used food additive known to induce insulin resistance and gut inflammation in animal models, and its effects on human health. Methods In a randomised, double-blind, placebo-controlled, cross-over trial conducted at a university hospital metabolic study centre, 20 males (age 27.4 ± 4.3 years, BMI 24.5 ± 2.5 kg/m 2 ) participated. The intervention involved oral intake of carrageenan (250 mg) or placebo in the morning and in the evening and each intervention lasted 2 weeks. The primary outcome measured was insulin sensitivity (using oral glucose tolerance test [OGTT] and hyperinsulinaemic-euglycaemic clamp). Additional end-points included whole body and hepatic insulin sensitivity, MRI-measured brain inflammation and insulin resistance, intestinal permeability (via lactulose-mannitol test and plasma zonulin levels), and gut microbiome composition. Immune-cell activation and pro-inflammatory cytokine release from peripheral blood mononuclear cells were measured. Results Overall insulin sensitivity did not show significant differences between the treatments. However, interactions between BMI and treatment were observed (OGTT-based insulin sensitivity index: p =0.04, fasting insulin resistance: p =0.01, hepatic insulin sensitivity index: p =0.04). In overweight participants, carrageenan exposure resulted in lower whole body and hepatic insulin sensitivity, a trend towards increased brain inflammation, and elevated C-reactive protein (CRP) and IL-6 levels compared to placebo. Additionally, carrageenan was associated with increased intestinal permeability. In vitro natural killer (NK-)cell activation and increased pro-inflammatory cytokine release were found after carrageenan exposure in the participant’s peripheral blood mononuclear cells. Conclusions These findings suggest that carrageenan, a common food additive, may contribute to insulin resistance and subclinical inflammation in overweight individuals through pro-inflammatory mechanisms in the gut. Further investigation into the long-term health impacts of carrageenan and other food additives is warranted. Trial registration NCT02629705.