Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
54
result(s) for
"动态再结晶"
Sort by:
Characterization of the Hot Deformation Behavior of Cu-Cr-Zr Alloy by Processing Maps
by
Yi Zhang Hui-Li Sun Alex A. Volinsky Bao-Hong Tian Zhe Chai Ping Liu Yong Liu
in
Alloys
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2016
Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1.
Journal Article
Hot deformation behavior of GH4945 superalloy using constitutive equation and processing map
by
Yan, Xiao-feng
,
Duan, Chun-hua
,
Wang, Jue
in
Applied and Technical Physics
,
Constitutive equation
,
Constitutive equations
2017
The hot deformation behavior of GH4945 superalloy was investigated by isothermal compression test in the temperature range of 1000--1200 ℃with strain rates of 0.001 10.000 s 1 toa total strain of 0.7. Dynamic recrystallization is the primary softening mechanism for GH4945 superalloy during hot deformation. The constitutive equation is established, and the calculated apparent activation energy is 458. 446 kJ/moh The processing maps at true strains of 0.2, 0.4 and 0.6 are generally similar, dem- onstrating that strain has little influence on processing map. The power dissipation efficiency and in- stability factors are remarkably influenced by deformation temperature and strain rate. The optimal hot working conditions are determined in temperature range of 1082 -1131 ℃ with strain rates of 0.004--0.018 s-1. Another domain of1134--1150 ℃ and 0. 018 0.213s ^- can also be selected as the optimal hot working conditions. The initial grains are replaced by dynamically reerystallized ones in optimal domains. The unsafe domains locate in the zone with strain rates above 0, 274 s^- 1, mainly characterized by uneven microstructure. Hot working is not recommended in the unsafe domains.
Journal Article
Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation
by
Peng Zhou Qing.Xian Ma
in
Avrami equation
,
Avrami方程
,
Characterization and Evaluation of Materials
2017
The dynamic recrystallization behavior of 25CrMo4 steel was systematically investigated by compression deformation at different temperatures and strain rates on a Gleeble 1500 thermal mechanical simulation tester. The flow curves under different deformation conditions were obtained, and the effects of deformation temperature and strain rate on the appearance of the flow curves were discussed. Based on the experimental flow curves, the activation energy determined by regression analysis was Q = 337 kJ/mol, and the constitutive model was constructed. All the characteristic points of the flow curves were identified from the work hardening rate curves (θ= dσ/dε vs σ), which were derived from the flow curves. Then, the kinetics model of dynamic recrystallization was determined by combining the Avrami equation with the stress loss resulted from the dynamic recrystallization. With the aid of the kinetics model, the effect of strain on the efficiency of power dissipation was discussed. Furthermore, the optimum parameters for the forging process were determined based on the processing maps.
Journal Article
Hot deformation behavior and process parameter optimization of Ti22Al25Nb using processing map
by
Jing-Li Zhang Hong-Zhen Guo Hou-Quan Liang
in
Bands
,
Biomaterials
,
Chemistry and Materials Science
2016
The hot deformation behavior of Ti22A125 Nb was investigated by hot compression test.The flow stressstrain curves can be divided into two types:conventional dynamic recrystallization(DRX) and discontinuous DRX.The different softening mechanism and micro structure observation of conventional DRX and discontinuous DRX were analyzed.The processing map(PM) of Ti22A125 Nb was built to predict the safe deformation region.The optimal low strain rate domain(DOM I) with high power dissipation efficiency indicates the complete DRX.Additionally,in the high strain rate and low-temperature domain(DOM Ⅲ),the power dissipation efficiency is low and some adiabatic shear bands and glide bands are observed,which are unsafe and should be avoided.Finally,the DRX map was established.In DOM I,it reveals low dislocation density and high DRX content,which is in agreement with PM.
Journal Article
Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process
by
N.Bayat;G.R.Ebrahimi;A.Momeni;H.R.Ezatpour
in
Ceramics
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2018
Single-and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s~(-1). In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.
Journal Article
Hot Deformation Behavior of SA508GR. 4N Steel for Nuclear Reactor Pressure Vessels
by
Ning LIU Zheng-dong LIU Xi-kou HE Zhi-qiang YANG Long-teng MA
in
Applied and Technical Physics
,
dynamic recrystallization
,
Engineering
2016
A hot compression experiment (1073 1473 K, strain rates of 0. 001-10 s -1 ) of SAS08GR. 4N low alloy steel was performed using a Gleeble-3800 thermal-mechanical simulator, and the hot deformation behavior of the steel was investigated by analyzing both the true stress true strain curves and its microstructures. The thermal de formation equation and hot deformation activation energy (Q) of SA508GR. 4N steel were obtained by regression with a classic hyperbolic sine function. The hot processing map of SAS08GR. 4N steel was also established. An empirical equation for the stress peak was described for practical applications. The SA508GR. 4N steel showed a critical Zener-Hollomon parameter (lnZc) for dynamic recrystallization (DRX) of 37.44, below which full DRX may occur. The sensitivity of the SA508GR. 4N steel increased linearly with test temperature, such that higher temperatures led to enhanced workability.
Journal Article
Prediction of critical forging penetration efficiency for 06Crl9Ni9NbN steel by dynamic recrystallization
2017
In order to determine the critical forging penetration efficiency (FPE) of 06Crl9NigNbN steel, a new model was presented to describe critical FPE, which is significant to optimize the steel forging process. The plane strain compression tests were conducted to obtain the model and confirm its va- lidity. The results indicated that the dynamic recrystallization (DRX) volume fraction increases and the grain size decreases with the rise of reduction ratio. Meanwhile, the compression process was simulated by DEFORM software. The tensile tests were conducted and the results demonstrated that the mechanical properties gradually become stable when the reduction ratio increases to 30%, 34% and 40% at 1200, 1 100 and 1000 ℃, respectively. The calculated results based on this new model are consistent with experimental results, indicating that the model is suitable to predict the critical FPE for the steel.
Journal Article
Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model
2016
A mesoscopic cellular automaton model that takes into account grain deformation during hot deformation has been developed to quantitatively depict the microstructural evolution of the austenite dynamic recrystallization (DRX) in a low-carbon steel. Both the grain deformation and the concept of DRX cycle are introduced, allowing accurate depictions of the grain structures, the overall microstructural properties and the flow stress evolutions that involving in the austenite DRX. The simulation results are compared with the experimental results and the predictions by the macroscopic DRX model and are found to be in good agreement.
Journal Article
Metadynamic Recrystallization of the As-cast 42CrMo Steel after Normalizing and Tempering during Hot Compression
2012
The existing researches of hot ring rolling process are mainly based on forged billet. Compared with the existing process, the new ring casting-rolling compound forming process has significant advantages in saving materials and energy, reducing emission and reducing the production cost. The microstructure evolution of the casting materials during hot deformation is the basis of the research of the new process. However, the researches on the casting materials are rare. The metadynamic recrystallization of the as-cast 42CrMo steel after normalizing and tempering during the hot compression is investigated. The tests are performed on the Gleeble-1500 thermal-mechanical simulator. The influence rule of the deformation parameters on the metadynamic recrystallization is obtained by analyzing the experimental data. The kinetic model of the rnetadynamic recrystallization is deduced. The analysis results show that the metadynamic recrystallization fraction increases with the increase of the deformation temperature and the strain rate. The metallographic experiments are used to investigate the influence rule of the deformation parameters on the grain size of the metadynamic recrystallization. The experimental results show that the grain of the metadynamic recrystallization could be refined with the increase of the strain rate and the decrease of the deformation temperature during hot compression. The occurrence of the metadynamic recrystallization during the hot deformation is more difficult in as-cast 42CrMo steel than in forged 42CrMo steel. The research can provide the foundation for the further research of the hot deformation behaviors of the as-cast structure and theoretical support for the new ring casting-rolling compound process.
Journal Article
Constitutive Modeling for Elevated Temperature Flow Behavior of 30Cr2Ni4MoV Ultra-super-critical Rotor Steel
by
Fei CHEN Fa-cai REN Zhen-shan CUI Xin-min LAI
in
30Cr2Ni4MoV steel
,
30Cr2Ni4MoV钢
,
Computer simulation
2014
In order to perform numerical simulation of forging and determine the hot deformation processing parameters for 30Cr2Ni4MoV steel, the compressive deformation behaviors of 30Cr2Ni4MoV steel were investigated at the temperatures from 970 to 1270 ℃ and strain rates from 0. 001 to 0.1 s-1 on a Gleeble-3500 thermo-mechanical simulator. The flow stress constitutive equations of the work hardening-dynamical recovery period and dynamical recrystallization period were established for 30Cr2Ni4MoV steel. The stress-strain curves of 30Cr2Ni4MoV steel predicted by the proposed model well agreed with experimental results, which confirmed that the proposed equations can be used to determine the hot deformation processing parameters for 30Cr2Ni4MoV steel.
Journal Article