Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1
result(s) for
"微体系结构"
Sort by:
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
by
De-gang YU Hui-feng DING Yuan-qing MAO Ming LIU Bo YU Xin ZHAO Xiao-qing WANG Yang LI Guang-wang LIU Shao-bo NIE Shen LIU Zhen-an ZHU
in
Animals
,
Apoptosis - drug effects
,
Biomedical and Life Sciences
2013
Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and sub- chondral bone remodeling in osteoarthritis (OA). Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg^-1·d^-1) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue 0 staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apop- tosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical prop- erties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks. Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA.
Journal Article