MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model
Journal Article

Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model

2013
Request Book From Autostore and Choose the Collection Method
Overview
Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and sub- chondral bone remodeling in osteoarthritis (OA). Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg^-1·d^-1) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue 0 staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apop- tosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical prop- erties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks. Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA.