Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
309 result(s) for "石墨"
Sort by:
浅谈高校图书馆地方特色数据库建设新举措——以黑龙江科技大学图书馆“石墨特色数据库”建设实践为例
特色数据库是图书馆为读者提供特色服务的重要途径。文章以黑龙江科技大学图书馆的石墨特色数据库建设为例,详细介绍了数据库的建设目标和建设过程。
发明人分析及其在人才引进中的应用探讨
[目的/意义]为了拓展专利信息分析方法的应用,应对人才引进工作的新的挑战,[方法/过程]从宏观和微观两个方面,对发明人分析方法及其在人才挖掘、人才评测等人才引进工作中的应用进行探讨,并以石墨烯领域专利发明人为例进行实证分析。[结果/结论]发明人分析能作为特定领域人才重要性评估依据。
石墨烯-硅光电子器件研究进展
O436; 本文综述了石墨烯-硅光电子器件的研究进展.随着科技的发展,人们对信息容量、传输速度、处理速度、能耗及成本提出了更高的要求.基于石墨烯特有的光学特性和电学特性,自发现以来备受关注.近年来,随着低成本、高速和高密度集成的硅基光电子技术的蓬勃发展,石墨烯-硅基光电子器件的研究迅速地成为了研究的热点,并取得了突破性进展.石墨烯-硅基光电子器件相比于传统的硅基光电子器件具有低功耗、温漂小、大带宽、带隙可控等优势.本文从调制器、探测器、偏振控制器等几个方面详细介绍了石墨烯-硅基光电子器件的发展现状.
钨酸钠与天然土状石墨在高温氩气氛围中的转化过程
以Na2WO4为钨源,天然土状石墨为碳源,研究二者在高温氩气气氛下的转化过程及规律,利用X射线衍射(XRD)、扫描电子显微镜(SEM)及电子能谱(EDS)对产物进行分析。结果表明,Na2WO4与石墨的混合样品在氩气气氛下经高温处理,可以生成不同的碳钨化合物。首先,石墨与Na2WO4在接触界面发生还原反应,将Na2WO4还原为α-W2C和β-W2C;然后,随着石墨增多,当Na2WO4与石墨的质量比小于1:1时,石墨开始将α-W2C还原为α-WC,直至Na2WO4与石墨的质量比为1:5时,石墨可以将α-W2C完全转化为α-WC。
后摩尔时代取代硅的微电子材料——碳纳米管和石墨烯
TN495; 在硅电子材料即将发展到顶峰时,碳纳米管及石墨烯以其优良的导体和半导体性质将成为延续硅材料的主流微电子材料.详述了碳纳米管和石墨烯的结构与电学性质,从而说明其作为微电子材料的优势,列举了在微电子器件构建中已经取得的成果及构建器件的方法,并简述了相应碳纳米管和石墨烯的制备方法.
Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying
With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.
Rational construction of graphene oxide with MOF- derived porous NiFe@C nanocubes for high-performance microwave attenuation
Exploring lightweight microwave attenuation materials with strong and tunable wideband microwave absorption is highly desirable but remains a significant challenge. Herein, three-dimensional (3D) porous hybrid composites consisting of NiFe nanoparticles embedded within carbon nanocubes decorated on graphene oxide (GO) sheets (NiFe@C nanocubes@GO) as high-performance microwave attenuation materials have been rationally synthesized. The 3D porous hybrid composites are fabricated by a simple method, which involves one-step pyrolysis of NiFe Prussian blue analogue nanocubes in the presence of GO sheets. Benefiting from the unique structural features that exhibit good magnetic and dielectric losses as well as a proper impedance match, the resulting NiFe@C nanocubes@GO composites show excellent microwave attenuation ability. With a minimum reflection loss (RL) of -51 dB at 7.7 GHz at a thickness of 2.8 mm and maximum percentage bandwidth of 38.6% for RL 〈 -10 dB at a thickness of 2.2 mm, the NiFe@C nanocubes@GO composites are superior to the previously reported state-of-the-art carbon-based microwave attenuation materials.
High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers
An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches -46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.
Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage
Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity. However, the pore size of GF is as large as hundreds of micrometers, resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls. In this study, a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks. The HGF is then used to prepare a paraffin wax (PW)-based composite PCM. The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW, respectively. The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM, negligible change in the phase-change temperature, a high thermal energy storage density that is 95% of pure PW, good thermal reliability, and chemical stability with cycling for 100 times. More importantly, PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to- thermal energy conversion and storage efficiency, indicating its great potential for applications in solar-energy utilization and storage.
Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings
We report the preparation of nanocomposites of reduced graphene oxide with embedded Fe3O4/Fe nanorings (FeNR@rGO) by chemical hydrothermal growth. We illustrate the use of these nanocomposites as novel electromagnetic wave absorbing materials. The electromagnetic wave absorption properties of the nanocomposites with different compositions were investigated. The preparation procedure and nanocomposite composition were optimized to achieve the best electromagnetic wave absorption properties. Nanocomposites with a GO:cx-Fe203 mass ratio of 1:1 prepared by annealing in HdAr for 3 h exhibited the best properties. This nanocomposite sample (thickness = 4.0 mm) showed a minimum reflectivity of -23.09 dB at 9.16 GHz. The band range was 7.4-11.3 GHz when the reflectivity was less than -10 dB and the spectrum width was up to 3.9 GHz. These figures of merit are typically of the same order of magnitude when compared to the values shown by traditional ferric oxide materials. However, FeNR@rGO can be readily applied as a microwave absorbing material because the production method we propose is highly compatible with mass production standards.