Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
146 result(s) for "631/136/83"
Sort by:
TMK-based cell-surface auxin signalling activates cell-wall acidification
The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion 1 . The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H + -ATPase that pumps protons into the apoplast 2 , yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H + -ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis . Auxin induced interactions between TMKs and H + -ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H + -ATPase and are required for auxin-induced H + -ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H + -ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling. Auxin induces transmembrane-kinase-dependent activation of H + -ATPase in the plasma membrane through phosphorylation of its penultimate threonine residue, promoting apoplastic acidification and hypocotyl cell elongation in Arabidopsis .
The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment
Key Points The Hippo pathway is an emerging tumour suppressor pathway that regulates cell proliferation, stem cell functions and organ size. The Hippo pathway transduces signals from diverse transmembrane inputs such as the cell adhesion and cell polarity receptors E-cadherin, FAT and Crumbs, as well as G protein-coupled receptors (GPCRs), through a kinase cascade that regulates the subcellular localization and activities of the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). YAP and TAZ promote cell proliferation and organ growth. Hyperactivation or overexpression of YAP in mouse models causes overgrowth of various organs and can lead to the development of cancer in the liver, skin and intestine. YAP and TAZ act as oncogenes and are hyperactivated or overexpressed with a high frequency in many common human cancers. YAP and TAZ promote multiple cancer cell phenotypes, including proliferation, migration and resistance to apoptosis. Direct or indirect inhibition of YAP and TAZ is a promising novel targeted approach for cancer therapy, and small-molecule modulators of the Hippo pathway have been discovered. Pharmacological modulation of YAP has been shown to be effective for reverting YAP-driven overgrowth phenotypes in mouse models. Further research is required to test whether small molecules targeting YAP and TAZ are active against human cancer cells and in mouse models that more accurately recapitulate the genetic defects of human tumours. By contrast, drugs that stimulate YAP and TAZ activity may be useful for stem cell expansion and tissue repair following injury. YAP is activated during the regeneration of the intestinal epithelium, and experimental activation of YAP promotes the capacity of the mouse heart to regenerate. The Hippo signalling pathway is an emerging growth control pathway with roles in organ growth control, stem cell function, regeneration and tumour suppression. Here, Johnson and Halder review the regulation and functions of the Hippo signalling pathway, focusing on its potential to be therapeutically targeted in the treatment of cancer as well as tissue repair and regeneration following injury. The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Growth anisotropy of the extracellular matrix shapes a developing organ
Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc. We report that 3D morphology results from elastic deformation due to differential growth anisotropy between the epithelial cell layer and its enveloping extracellular matrix (ECM). While the tissue layer grows in plane, growth of the bottom ECM occurs in 3D and is reduced in magnitude, thereby causing geometric frustration and tissue bending. The elasticity, growth anisotropy and morphogenesis of the organ are fully captured by a mechanical bilayer model. Moreover, differential expression of the Matrix metalloproteinase MMP2 controls growth anisotropy of the ECM envelope. This study shows that the ECM is a controllable mechanical constraint whose intrinsic growth anisotropy directs tissue morphogenesis in a developing organ. Tissue morphogenesis is a complex process that involves tissue growth, mechanics, and shape changes. This work demonstrates that differences in growth rate and direction between a tissue layer and its associated extracellular matrix drive 3D shape changes during organ growth.
Control of osteoblast regeneration by a train of Erk activity waves
Regeneration is a complex chain of events that restores a tissue to its original size and shape. The tissue-wide coordination of cellular dynamics that is needed for proper morphogenesis is challenged by the large dimensions of regenerating body parts. Feedback mechanisms in biochemical pathways can provide effective communication across great distances 1 – 5 , but how they might regulate growth during tissue regeneration is unresolved 6 , 7 . Here we report that rhythmic travelling waves of Erk activity control the growth of bone in time and space in regenerating zebrafish scales, millimetre-sized discs of protective body armour. We find that waves of Erk activity travel across the osteoblast population as expanding concentric rings that are broadcast from a central source, inducing ring-like patterns of tissue growth. Using a combination of theoretical and experimental analyses, we show that Erk activity propagates as excitable trigger waves that are able to traverse the entire scale in approximately two days and that the frequency of wave generation controls the rate of scale regeneration. Furthermore, the periodic induction of synchronous, tissue-wide activation of Erk in place of travelling waves impairs tissue growth, which indicates that wave-distributed Erk activation is key to regeneration. Our findings reveal trigger waves as a regulatory strategy to coordinate cell behaviour and instruct tissue form during regeneration. The rate of scale regeneration in zebrafish is controlled by the frequency of rhythmic travelling waves of Erk activity, which are broadcast from a central source to induce ring-like patterns of osteoblast tissue growth.
MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway
The Hippo pathway plays a central role in tissue homoeostasis, and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include a kinase cascade of MST1/2 and LATS1/2 and the transcription co-activators YAP/TAZ. In response to stimulation, LATS1/2 phosphorylate and inhibit YAP/TAZ, the main effectors of the Hippo pathway. Accumulating evidence suggests that MST1/2 are not required for the regulation of YAP/TAZ. Here we show that deletion of LATS1/2 but not MST1/2 abolishes YAP/TAZ phosphorylation. We have identified MAP4K family members—Drosophila Happyhour homologues MAP4K1/2/3 and Misshapen homologues MAP4K4/6/7—as direct LATS1/2-activating kinases. Combined deletion of MAP4Ks and MST1/2, but neither alone, suppresses phosphorylation of LATS1/2 and YAP/TAZ in response to a wide range of signals. Our results demonstrate that MAP4Ks act in parallel to and are partially redundant with MST1/2 in the regulation of LATS1/2 and YAP/TAZ, and establish MAP4Ks as components of the expanded Hippo pathway. A variety of signals have been reported to either activate or inhibit the Hippo kinase cascade. Here, Meng et al . show that mitogen activated protein kinase kinase kinase kinase (MAP4K) family members function in parallel to and are partially redundant with MST1/2 in regulating LATS in response to upstream signals.
Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway
YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumour suppressor pathway and controls cell growth, tissue homeostasis and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo–YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP Ser 94, a residue essential for the interaction with TEAD, thus disrupting the YAP–TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo–YAP pathway. In two related papers, Chen and colleagues and Guan and colleagues report a crucial role for the AMPK and Hippo pathways in glucose homeostasis. Starvation triggers AMPK-mediated phosphorylation and inactivation of YAP.
AMPK modulates Hippo pathway activity to regulate energy homeostasis
The Hippo pathway was discovered as a conserved tumour suppressor pathway restricting cell proliferation and apoptosis. However, the upstream signals that regulate the Hippo pathway in the context of organ size control and cancer prevention are largely unknown. Here, we report that glucose, the ubiquitous energy source used for ATP generation, regulates the Hippo pathway downstream effector YAP. We show that both the Hippo pathway and AMP-activated protein kinase (AMPK) were activated during glucose starvation, resulting in phosphorylation of YAP and contributing to its inactivation. We also identified glucose-transporter 3 ( GLUT3 ) as a YAP-regulated gene involved in glucose metabolism. Together, these results demonstrate that glucose-mediated energy homeostasis is an upstream event involved in regulation of the Hippo pathway and, potentially, an oncogenic function of YAP in promoting glycolysis, thereby providing an exciting link between glucose metabolism and the Hippo pathway in tissue maintenance and cancer prevention. In two related papers, Chen and colleagues and Guan and colleagues report a crucial role for the AMPK and Hippo pathways in glucose homeostasis. Starvation triggers AMPK-mediated phosphorylation and inactivation of YAP.
The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal
Precise control of organ size is crucial during animal development and regeneration. In Drosophila and mammals, studies over the past decade have uncovered a critical role for the Hippo tumour-suppressor pathway in the regulation of organ size. Dysregulation of this pathway leads to massive overgrowth of tissue. The Hippo signalling pathway is highly conserved and limits organ size by phosphorylating and inhibiting the transcription co-activators YAP and TAZ in mammals and Yki in Drosophila , key regulators of proliferation and apoptosis. The Hippo pathway also has a critical role in the self-renewal and expansion of stem cells and tissue-specific progenitor cells, and has important functions in tissue regeneration. Emerging evidence shows that the Hippo pathway is regulated by cell polarity, cell adhesion and cell junction proteins. In this review we summarize current understanding of the composition and regulation of the Hippo pathway, and discuss how cell polarity and cell adhesion proteins inform the role of this pathway in organ size control and regeneration.
Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation
Bone-marrow-derived skeletal stem/stromal cell (SSC) self-renewal and function are critical to skeletal development, homeostasis and repair. Nevertheless, the mechanisms controlling SSC behaviour, particularly bone formation, remain ill-defined. Using knockout mouse models that target the zinc-finger transcription factors Snail or Slug, or Snail and Slug combined, a regulatory axis has been uncovered wherein Snail and Slug cooperatively control SSC self-renewal, osteoblastogenesis and bone formation. Mechanistically, Snail/Slug regulate SSC function by forming complexes with the transcriptional co-activators YAP and TAZ in tandem with the inhibition of the Hippo-pathway-dependent regulation of YAP/TAZ signalling cascades. In turn, the Snail/Slug–YAP/TAZ axis activates a series of YAP/TAZ/TEAD and Runx2 downstream targets that control SSC homeostasis and osteogenesis. Together, these results demonstrate that SSCs mobilize Snail/Slug–YAP/TAZ complexes to control stem cell function. Weiss and colleagues report that the EMT transcription factors Snail and Slug control skeletal stem cell self-renewal and differentiation by forming transcriptional complexes with the co-activators YAP and TAZ.