Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
397 result(s) for "631/208/212/2301"
Sort by:
Integrative omics for health and disease
Advances in omics technologies -- such as genomics, transcriptomics, proteomics and metabolomics -- have begun to enable personalized medicine at an extraordinarily detailed molecular level. Individually, these technologies have contributed medical advances that have begun to enter clinical practice. However, each technology individually cannot capture the entire biological complexity of most human diseases. Integration of multiple technologies has emerged as an approach to provide a more comprehensive view of biology and disease. In this Review, we discuss the potential for combining diverse types of data and the utility of this approach in human health and disease. We provide examples of data integration to understand, diagnose and inform treatment of diseases, including rare and common diseases as well as cancer and transplant biology. Finally, we discuss technical and other challenges to clinical implementation of integrative omics.
Network propagation: a universal amplifier of genetic associations
Key Points Network propagation transforms a short list of candidate genes into a genome-wide profile of gene scores that are based on proximity to candidates in a gene network. This transformation greatly improves the power of genetic association, providing a universal amplifier for genetic analysis. Mathematically, the technique of network propagation is simplifying and unifying. Network propagation methods can be used to identify genes and genetic modules that underlie human disease. Network propagation is based on the principle that genes underlying similar phenotypes are more likely to interact with each other. It is proving to be a powerful approach for extracting biological information from molecular networks that is relevant to human disease. Biological networks are powerful resources for the discovery of genes and genetic modules that drive disease. Fundamental to network analysis is the concept that genes underlying the same phenotype tend to interact; this principle can be used to combine and to amplify signals from individual genes. Recently, numerous bioinformatic techniques have been proposed for genetic analysis using networks, based on random walks, information diffusion and electrical resistance. These approaches have been applied successfully to identify disease genes, genetic modules and drug targets. In fact, all these approaches are variations of a unifying mathematical machinery — network propagation — suggesting that it is a powerful data transformation method of broad utility in genetic research.
The mutational constraint spectrum quantified from variation in 141,456 humans
Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes 1 . Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions
Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions — familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background — the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant. Genetic variation predisposes to disease via monogenic and polygenic risk variants. Here, the authors assess the interplay between these types of variation on disease penetrance in 80,928 individuals. In carriers of monogenic variants, they show that disease risk is a gradient influenced by polygenic background.
Curated variation benchmarks for challenging medically relevant autosomal genes
The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS , CRYAA and KCNE1 . When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome. Variant detection in problematic genes is facilitated with a curated benchmark.
A framework for enhancing ethical genomic research with Indigenous communities
Integration of genomic technology into healthcare settings establishes new capabilities to predict disease susceptibility and optimize treatment regimes. Yet, Indigenous peoples remain starkly underrepresented in genetic and clinical health research and are unlikely to benefit from such efforts. To foster collaboration with Indigenous communities, we propose six principles for ethical engagement in genomic research: understand existing regulations, foster collaboration, build cultural competency, improve research transparency, support capacity building, and disseminate research findings. Inclusion of underrepresented communities in genomic research has the potential to expand our understanding of genomic influences on health and improve clinical approaches for all populations. Indigenous peoples are still underrepresented in genetic research. Here, the authors propose an ethical framework consisting of six major principles that encourages researchers and Indigenous communities to build strong and equal partnerships to increase trust, engagement and diversity in genomic studies.
Readfish enables targeted nanopore sequencing of gigabase-sized genomes
Nanopore sequencers can be used to selectively sequence certain DNA molecules in a pool by reversing the voltage across individual nanopores to reject specific sequences, enabling enrichment and depletion to address biological questions. Previously, we achieved this using dynamic time warping to map the signal to a reference genome, but the method required substantial computational resources and did not scale to gigabase-sized references. Here we overcome this limitation by using graphical processing unit (GPU) base-calling. We show enrichment of specific chromosomes from the human genome and of low-abundance organisms in mixed populations without a priori knowledge of sample composition. Finally, we enrich targeted panels comprising 25,600 exons from 10,000 human genes and 717 genes implicated in cancer, identifying PML – RARA fusions in the NB4 cell line in <15 h sequencing. These methods can be used to efficiently screen any target panel of genes without specialized sample preparation using any computer and a suitable GPU. Our toolkit, readfish, is available at https://www.github.com/looselab/readfish . A nanopore sequencer achieves selective sequencing of any region in the human genome.
Paediatric genomics: diagnosing rare disease in children
The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition. However, making a molecular diagnosis with current technologies and knowledge is often still a challenge. Paediatric genomics is an immature but rapidly evolving field that tackles this issue by incorporating next-generation sequencing technologies, especially whole-exome sequencing and whole-genome sequencing, into research and clinical workflows. This complex multidisciplinary approach, coupled with the increasing availability of population genetic variation data, has already resulted in an increased discovery rate of causative genes and in improved diagnosis of rare paediatric disease. Importantly, for affected families, a better understanding of the genetic basis of rare disease translates to more accurate prognosis, management, surveillance and genetic advice; stimulates research into new therapies; and enables provision of better support.
Strategic vision for improving human health at The Forefront of Genomics
Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward—that is, at ‘The Forefront of Genomics’. In this Perspective, authors from the National Human Genome Research Institute (NHGRI) present a vision for human genomics research for the coming decade.
Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software
In recent years, many software packages for identifying structural variants (SVs) using whole-genome sequencing data have been released. When published, a new method is commonly compared with those already available, but this tends to be selective and incomplete. The lack of comprehensive benchmarking of methods presents challenges for users in selecting methods and for developers in understanding algorithm behaviours and limitations. Here we report the comprehensive evaluation of 10 SV callers, selected following a rigorous process and spanning the breadth of detection approaches, using high-quality reference cell lines, as well as simulations. Due to the nature of available truth sets, our focus is on general-purpose rather than somatic callers. We characterise the impact on performance of event size and type, sequencing characteristics, and genomic context, and analyse the efficacy of ensemble calling and calibration of variant quality scores. Finally, we provide recommendations for both users and methods developers. A number of computational methods have been developed for calling structural variants (SVs) using short read sequencing data. Here, the authors perform a comprehensive benchmarking analysis comparing 10 general-purpose callers and provide recommendations for both users and methods developers.