Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "631/250/249/1570/1901"
Sort by:
CD8+ T cells in HIV control, cure and prevention
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies.Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Prevention, treatment and cure of HIV infection
The development of antiretroviral therapy for the prevention and treatment of HIV infection has been marked by a series of remarkable successes. However, the efforts to develop a vaccine have largely failed, and efforts to discover a cure are only now beginning to gain traction. In this Review, we describe recent progress on all fronts — pre-exposure prophylaxis, vaccines, treatment and cure — and we discuss the unmet needs, both current and in the coming years. We describe the emerging arsenal of drugs, biologics and strategies that will hopefully address these needs. Although HIV research has largely been siloed in the past, this is changing, as the emerging research agenda is marked by multiple cross-discipline synergies and collaborations. As the limitations of antiretroviral drugs as a means to truly end the epidemic are becoming more apparent, there is a great need for continued efforts to develop an effective preventative vaccine and a scalable cure, both of which remain formidable challenges.In this Review, Landovitz, Scott and Deeks explore the current state of the art for HIV prevention and treatment, including unmet needs and emerging tools. They describe how researchers are combining different approaches, such as prevention, treatment and cure, to achieve better outcomes in the fight against the HIV/AIDS epidemic.
Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection
Co-infection with Mycobacterium tuberculosis is the leading cause of death in individuals infected with HIV-1. It has long been known that HIV-1 infection alters the course of M. tuberculosis infection and substantially increases the risk of active tuberculosis (TB). It has also become clear that TB increases levels of HIV-1 replication, propagation and genetic diversity. Therefore, co-infection provides reciprocal advantages to both pathogens. In this Review, we describe the epidemiological associations between the two pathogens, selected interactions of each pathogen with the host and our current understanding of how they affect the pathogenesis of TB and HIV-1/AIDS in individuals with co-infections. We evaluate the mechanisms and consequences of HIV-1 depletion of T cells on immune responses to M. tuberculosis. We also discuss the effect of HIV-1 infection on the control of M. tuberculosis by macrophages through phagocytosis, autophagy and cell death, and we propose models by which dysregulated inflammatory responses drive the pathogenesis of TB and HIV-1/AIDS.
Elimination of HIV-1-infected cells by broadly neutralizing antibodies
The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir. Broadly neutralizing antibodies (bNAbs) are promising as potential therapies targeting HIV-1 but their overall antiviral activity remains to be fully elucidated. Here the authors evaluate the ability of a panel of bNAbs to trigger antibody-dependent cellular cytotoxicity and identify the most effective antibody combinations.
Broad and potent neutralization of HIV-1 by a gp41-specific human antibody
Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. A novel neutralizing antibody from a healthy HIV-1-infected donor that is specific for the membrane proximal region of gp41 is reported; the antibody has high potency and breadth, is not autoreactive and does not bind phospholipids. Target for HIV/AIDS vaccine Jinghe Huang et al . report a novel neutralizing antibody from a healthy HIV-1-infected donor that is specific for the membrane-proximal region of gp41. The antibody has high potency and breadth, is not autoreactive and does not bind phospholipids. This work demonstrates a conserved site of gp41 vulnerability that is an important target antigen for HIV neutralization, with implications for efforts to elicit broadly neutralizing antibodies with vaccines.
Towards an HIV cure: a global scientific strategy
The development of effective antiretroviral therapies has greatly improved the disease prognosis for patients with HIV. However, the limitations of these therapies have renewed interest in developing alternative treatment strategies. Here, a group of experts from the International AIDS Society discuss the research steps that need to be taken to achieve the ultimate objective — a cure for HIV. Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the group's recommended key goals for the international community.
The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention
Most HIV transmissions among men who have sex with men (MSM), the group that accounted for 67% of new US infections in 2014, occur via exposure to the rectal mucosa. However, it is unclear how the act of condomless receptive anal intercourse (CRAI) may alter the mucosal immune environment in HIV-negative MSM. Here, we performed a comprehensive characterization of the rectal mucosal immune environment for the phenotype and production of pro-inflammatory cytokines by CD4 and CD8 T cells, global transcriptomic analyses, and the composition of microbiota in HIV-negative MSM. Our results show that compared with men who had never engaged in anal intercourse, the rectal mucosa of MSM engaging in CRAI has a distinct phenotype characterized by higher levels of Th17 cells, greater CD8+ T cell proliferation and production of pro-inflammatory cytokines, molecular signatures associated with mucosal injury and repair likely mediated by innate immune cells, and a microbiota enriched for the Prevotellaceae family. These data provide a high-resolution model of the immunological, molecular, and microbiological perturbations induced by CRAI, will have direct utility in understanding rectal HIV transmission among MSM, and will enhance the design of future biomedical prevention interventions, including candidate HIV vaccines.
Why have T cell-inducing vaccines for HIV failed so far?
The failure of T cell-targeted vaccines for HIV in clinical trials is likely due to impaired degranulation of low-avidity CD8+ T cells in the context of low levels of antigen presentation.
Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation
Antibodies hedge their bets Most antibodies are highly specific, binding with high affinity to a single foreign antigen. However, an analysis of human immunodeficiency virus (HIV) envelope glycoprotein-specific monoclonal antibodies from infected subjects provides evidence for a surprisingly high degree of polyreactivity. Of 134 different antibodies directed at the gp140 envelope glycoprotein cloned from six patients, 75% were polyreactive, binding with high affinity to one gp140 site and with lower affinity to other sites on the viral surface. Relatively few gp140 glycoprotein spikes are displayed on the surface of HIV, so homotypic bivalent antibody binding is disfavoured and 'heteroligation' may help to improve net antibody affinity in such instances. During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. Here, the monoclonal antibodies produced in two infected subjects in response to human immunodeficiency virus (HIV) glycoprotein have been analysed. The results provide evidence for polyreactivity, which may be required when the density of glycoprotein spikes is so low that bivalent binding is unlikely. During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding 1 , 2 , 3 . Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development 4 , it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients 5 with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.