Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
443 result(s) for "631/378/548/1964"
Sort by:
Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer
Type A γ-aminobutyric acid (GABA A ) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system 1 , 2 . Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia 3 , 4 . Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1β2/3γ2 GABA A receptors 5 . The β3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in β1–β3 triple knockout neurons 6 . So far, efforts to generate accurate structural models for heteromeric GABA A receptors have been hampered by the use of engineered receptors and the presence of detergents 7 – 9 . Notably, some recent cryo-electron microscopy reconstructions have reported ‘collapsed’ conformations 8 , 9 ; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor 10 , 11 , the large body of structural work on homologous homopentameric receptor variants 12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1β3γ2L—a major synaptic GABA A receptor isoform—that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator ‘megabody’ and is in a desensitized conformation. Each GABA A receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3–M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABA A receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology. A high-resolution cryo-electron microscopy structure is reported for the full-length human α1β3γ2L GABA A receptor, functionally reconstituted in lipid nanodiscs.
Mapping neurotransmitter systems to the structural and functional organization of the human neocortex
Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.Hansen et al. compile and share an atlas of neurotransmitter receptor/transporter densities in the human cortex and show that receptor achitecture reflects brain structure, function, dynamics, cognitive specialization and disease vulnerability.
Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.The levels of neurotransmitters and neuromodulators have been difficult to track. In this Review, Wu et al. give an overview of conventional and modern tools and imaging methods for monitoring neurochemicals, with a focus on genetically encoded sensors.
Fractionating impulsivity: neuropsychiatric implications
Key Points Although also being a characteristic of normal behaviour, excessive impulsivity is an important symptom of several neuropsychiatric and neurological disorders, including addiction, attention-deficit hyperactivity disorder and Parkinson disease. However, impulsivity may comprise several apparently related forms that depend on distinct neuropsychological processes and neural systems. Of particular importance are interactions between frontostriatal systems and their neurochemical modulation, which are also providing new insights into the functions of these systems in behaviour. The psychological and neural basis of impulsivity can be studied in a mutually profitable way in experimental animals and in humans. Striking parallels can be observed in the underlying neurobehavioural systems, allowing both macro- and micro-definition of functional circuits. The dissection of impulsivity in this Review may represent a way in which complex behaviour relevant to psychiatric disorders can be broken down into its constituent parts, thus allowing for improved genetic understanding and more-precise treatments at the level of symptoms rather than according to categorical diagnoses of mental health disorders. Impulsivity comes in various forms, with some forms considered more or less advantageous than others. Dalley and Robbins review the different types of impulsivity and their underlying neural mechanisms, and comment on the applicability of measures of impulsivity in research into psychiatric disorders. The ability to make decisions and act quickly without hesitation can be advantageous in many settings. However, when persistently expressed, impulsive decisions and actions are considered risky, maladaptive and symptomatic of such diverse brain disorders as attention-deficit hyperactivity disorder, drug addiction and affective disorders. Over the past decade, rapid progress has been made in the identification of discrete neural networks that underlie different forms of impulsivity — from impaired response inhibition and risky decision making to a profound intolerance of delayed rewards. Herein, we review what is currently known about the neural and psychological mechanisms of impulsivity, and discuss the relevance and application of these new insights to various neuropsychiatric disorders.
Control of synaptic plasticity in deep cortical networks
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.
Spatial and temporal scales of dopamine transmission
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.Dopamine is often portrayed as a diffuse, slow neuromodulator, yet such signalling cannot explain its broad and sometimes rapid roles. Here, Liu, Goel and Kaeser review recent insights into dopamine release and receptors and present a new framework — the domain-overlap model — for dopamine signalling.
X-ray structure of the human α4β2 nicotinic receptor
Nicotinic acetylcholine receptors are ligand-gated ion channels that mediate fast chemical neurotransmission; here, the first X-ray crystal structure of a nicotinic receptor is reported, revealing how nicotine stabilizes the receptor in a non-conducting, desensitized conformation. Structure of a nicotinic acetylcholine receptor Nicotinic acetylcholine receptors are ligand-gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and have diverse signalling roles in the central nervous system. In this manuscript, the authors report the first X-ray crystal structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. In addition to representing the first high-resolution structure of a heteromeric member of the pentameric 'Cys-loop' receptor family, the structure was obtained in the presence of nicotine and reveals how this agonist stabilizes the receptor in a non-conducting, desensitized conformation. Nicotinic acetylcholine receptors are ligand-gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and have diverse signalling roles in the central nervous system. The nicotinic receptor has been a model system for cell-surface receptors, and specifically for ligand-gated ion channels, for well over a century 1 , 2 . In addition to the receptors’ prominent roles in the development of the fields of pharmacology and neurobiology, nicotinic receptors are important therapeutic targets for neuromuscular disease, addiction, epilepsy and for neuromuscular blocking agents used during surgery 2 , 3 , 4 . The overall architecture of the receptor was described in landmark studies of the nicotinic receptor isolated from the electric organ of Torpedo marmorata 5 . Structures of a soluble ligand-binding domain have provided atomic-scale insights into receptor–ligand interactions 6 , while high-resolution structures of other members of the pentameric receptor superfamily provide touchstones for an emerging allosteric gating mechanism 7 . All available high-resolution structures are of homopentameric receptors. However, the vast majority of pentameric receptors (called Cys-loop receptors in eukaryotes) present physiologically are heteromeric. Here we present the X-ray crystallographic structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. This structure provides insights into the architectural principles governing ligand recognition, heteromer assembly, ion permeation and desensitization in this prototypical receptor class.
Basal forebrain cholinergic signalling: development, connectivity and roles in cognition
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in ‘binding’ diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.Through their widespread connectivity, cholinergic projection neurons in the basal forebrain can modulate diverse cognitive functions. In this Review, Ananth and colleagues provide a comprehensive overview of the development, organization and function of different populations of basal forebrain cholinergic neurons.
Dopamine transients follow a striatal gradient of reward time horizons
Animals make predictions to guide their behavior and update those predictions through experience. Transient increases in dopamine (DA) are thought to be critical signals for updating predictions. However, it is unclear how this mechanism handles a wide range of behavioral timescales—from seconds or less (for example, if singing a song) to potentially hours or more (for example, if hunting for food). Here we report that DA transients in distinct rat striatal subregions convey prediction errors based on distinct time horizons. DA dynamics systematically accelerated from ventral to dorsomedial to dorsolateral striatum, in the tempo of spontaneous fluctuations, the temporal integration of prior rewards and the discounting of future rewards. This spectrum of timescales for evaluative computations can help achieve efficient learning and adaptive motivation for a broad range of behaviors. Mohebi et al. report that dopamine (DA) pulses in different rat striatal subregions signal prediction errors across different timescales. In this way, one learning process may achieve a range of adaptive behaviors.
Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors
Atypical antipsychotic drugs (APDs) have been hypothesized to show reduced extrapyramidal side effects (EPS) due to their rapid dissociation from the dopamine D 2 receptor. However, support for this hypothesis is limited to a relatively small number of observations made across several decades and under different experimental conditions. Here we show that association rates, but not dissociation rates, correlate with EPS. We measured the kinetic binding properties of a series of typical and atypical APDs in a novel time-resolved fluorescence resonance energy transfer assay, and correlated these properties with their EPS and prolactin-elevating liabilities at therapeutic doses. EPS are robustly predicted by a rebinding model that considers the microenvironment of postsynaptic D 2 receptors and integrates association and dissociation rates to calculate the net rate of reversal of receptor blockade. Thus, optimizing binding kinetics at the D 2 receptor may result in APDs with improved therapeutic profile. Atypical antipsychotics show reduced extrapyramidal side effects compared to first generation drugs. Here the authors use time-resolved FRET to measure binding kinetics, and show that side effects correlate with drug association rates to the D 2 receptor, while dissociation rates correlate with prolactin elevation.