Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
853 result(s) for "639/4077/909/4101/4096"
Sort by:
Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells
Non-fullerene fused-ring electron acceptors boost the power conversion efficiency of organic solar cells, but they suffer from high synthetic cost and low yield. Here, we show a series of low-cost noncovalently fused-ring electron acceptors, which consist of a ladder-like core locked by noncovalent sulfur–oxygen interactions and flanked by two dicyanoindanone electron-withdrawing groups. Compared with that of similar but unfused acceptor, the presence of ladder-like structure markedly broadens the absorption to the near-infrared region. In addition, the use of intramolecular noncovalent interactions avoids the tedious synthesis of covalently fused-ring structures and markedly lowers the synthetic cost. The optimized solar cells displayed an outstanding efficiency of 13.24%. More importantly, solar cells based on these acceptors demonstrate very low non-radiative energy losses. This research demonstrates that low-cost noncovalently fused-ring electron acceptors are promising to achieve high-efficiency organic solar cells. Recently, the non-fullerene acceptors with fused rings enable high-efficiency organic solar cells but they are not ideal in terms of synthetic cost and yield. Here, Huang et al. report ‘less fused’ acceptors with non-covalent S⋅⋅⋅O interactions and solar cell efficiency of up to 13%.
Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells
Perovskite/silicon tandem solar cells promise power conversion efficiencies beyond the Shockley–Queisser limit of single-junction devices; however, their actual outdoor performance is yet to be investigated. Here we fabricate 25% efficient two-terminal monolithic perovskite/silicon tandem solar cells and test them outdoors in a hot and sunny climate. We find that the temperature dependence of both the silicon and perovskite bandgaps—which follow opposing trends—shifts the devices away from current matching for two-terminal tandems that are optimized at standard test conditions. Consequently, we argue that the optimal perovskite bandgap energy at standard test conditions is <1.68 eV for field performance at operational temperatures greater than 55 °C, which is lower compared with earlier findings. This implies that bromide-lean perovskites with narrower bandgaps at standard test conditions—and therefore better phase stability—hold great promise for the commercialization of perovskite/silicon tandem solar cells. Outdoor field testing is crucial to understand how solar cells behave under operational conditions. Here, Aydin et al. show that a lower perovskite bandgap than that calculated at laboratory standard test conditions enhances the performance of perovskite/silicon tandem cells in the field.
Regulating three-layer full carbon electrodes to enhance the cell performance of CsPbI3 perovskite solar cells
Carbon-based perovskite solar cells exhibit a promising application prospect due to its cost effective and attractive hydrophobic nature and chemical inertness, but are still limited to unsatisfied device efficiency. Herein, we design a triple-layer full-carbon electrode for n-i-p typed perovskite solar cells, which is comprised of a modified macroporous carbon layer, a highly conductive graphite layer and a thin dense carbon layer, and each layer undertakes different contribution to improving the cell performance. Based on this full-carbon electrode, inorganic CsPbI 3 perovskite solar cells exhibit >19% certified efficiency which is the highest result among carbon-based CsPbI 3 devices. On one hand, carbon quantum dots decorated on the macro-porous carbon layer can realize better energy alignment of full-carbon electrode/spiro-OMeTAD/CsPbI 3 interface, on the other hand, highly conductive graphite layer is advantageous to carrier transporting. Typically, the top dense carbon layer exhibits significant thermal radiation ability, which can reduce the operational temperature of devices by about 10 °C, both from theoretical simulation and experimental testing. Thereby, packaged full-carbon electrode based CsPbI 3 cells exhibit much better photothermal stability at ~70°C accompanied by white light emitting diode illumination, which exhibit no efficiency degradation after 2000 h continuous operational tracking. The device efficiency of carbon-based perovskite solar cells remains unsatisfactory. Here, the authors design a triple-layer full-carbon electrode with carbon quantum dots decorated on macro-porous carbon layer, realizing certified efficiency of over 19% for n-i-p CsPbI3 perovskite solar cells.
Homogenizing out-of-plane cation composition in perovskite solar cells
Perovskite solar cells with the formula FA 1− x Cs x PbI 3 , where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice 1 , 2 , the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells 3 , 4 . Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p–i–n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability. We added out-of-plane cations to homogenize the distribution of cations in perovskite films, resulting in a solar cell with improved efficiency and stability.
Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
Metal halide perovskites of the general formula ABX 3 —where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion—have shown great potential as light harvesters for thin-film photovoltaics 1 – 5 . Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI 3 ) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells 6 – 9 , and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO − ) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance. Incorporation of the pseudo-halide anion formate during the fabrication of α-FAPbI 3 perovskite films eliminates deleterious iodide vacancies, yielding solar cell devices with a certified power conversion efficiency of 25.21 per cent and long-term operational stability.
All-perovskite tandem solar cells with improved grain surface passivation
All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells 1 – 3 ; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells 4 , 5 . A thick mixed Pb–Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells 6 , yet this is challenging owing to the short carrier diffusion length within Pb–Sn perovskites. Here we develop ammonium-cation-passivated Pb–Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 μm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb–Sn perovskites twofold, to over 5 μm, and increase the efficiency of Pb–Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions. A certified efficiency of 26.4% in all-perovskite tandem solar cells, exceeding that of the best-performing single-junction perovskite solar cells, is achieved by control over surface defects in the Pb–Sn subcell.
Long-range exciton diffusion in molecular non-fullerene acceptors
The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport excitons over longer distances can help advancing our understanding and lead to solar cells with higher efficiency. Here, we measure the exciton diffusion length in a wide range of nonfullerene acceptor molecules using two different experimental techniques based on photocurrent and ultrafast spectroscopy measurements. The acceptors exhibit balanced ambipolar charge transport and surprisingly long exciton diffusion lengths in the range of 20 to 47 nm. With the aid of quantum-chemical calculations, we are able to rationalize the exciton dynamics and draw basic chemical design rules, particularly on the importance of the end-group substituent on the crystal packing of nonfullerene acceptors. The short-range diffusion length of organic semiconductors severely limits exciton harvesting and charge generation in organic bulk heterojunction solar cells. Here, the authors report exciton diffusion length in the range of 20 to 47 nm for a wide range of non-fullerene acceptors molecules.
Performance analyses of highly efficient inverted all-perovskite bilayer solar cell
Numerical simulation of an all-perovskite bilayer solar cell has been conducted by the SCAPS-1D. The presented structure employs MAPbI 3 as a relatively wide bandgap (1.55 eV) top absorber and FA 0.5 MA 0.5 Pb 0.5 Sn 0.5 I 3 as a narrow bandgap (1.25 eV) bottom absorber. The viability of the proposed design is accomplished in two steps. First, to validate this study, two inverted solar cells in standalone conditions are simulated and calibrated to fit previously reported state-of-the-art results. Second, both these devices are appraised for the bilayer configuration to boost their performances. Affecting parameters such as the thickness of perovskite absorbers, the work function of front and rear contacts, and the effect of temperature have been studied because solar cells are temperature-sensitive devices, and also carrier concentration and their mobility get overwhelmingly influenced as temperature increases. It is manifested that using bilayer structures could easily widen the absorption spectrum to the near-infrared region and significantly enhance the performance of the device which is mainly affected by the thickness of the FA 0.5 MA 0.5 Pb 0.5 Sn 0.5 I 3 layer. Also, it has been found that the work function of the front contact has a prominent role with its optimal values being above 5 eV. Finally, the optimized inverted all-perovskite bilayer solar cell delivers a power conversion efficiency of 24.83%, fill factor of 79.4%, open circuit voltage of 0.9 V, and short circuit current density of 34.76 mA/cm 2 at 275 K and a thickness of 100 nm and 600 nm for MAPbI 3 and FA 0.5 MA 0.5 Pb 0.5 Sn 0.5 I 3 , respectively.
19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition
Non-fullerene acceptors based organic solar cells represent the frontier of the field, owing to both the materials and morphology manipulation innovations. Non-radiative recombination loss suppression and performance boosting are in the center of organic solar cell research. Here, we developed a non-monotonic intermediate state manipulation strategy for state-of-the-art organic solar cells by employing 1,3,5-trichlorobenzene as crystallization regulator, which optimizes the film crystallization process, regulates the self-organization of bulk-heterojunction in a non-monotonic manner, i.e., first enhancing and then relaxing the molecular aggregation. As a result, the excessive aggregation of non-fullerene acceptors is avoided and we have achieved efficient organic solar cells with reduced non-radiative recombination loss. In PM6:BTP-eC9 organic solar cell, our strategy successfully offers a record binary organic solar cell efficiency of 19.31% (18.93% certified) with very low non-radiative recombination loss of 0.190 eV. And lower non-radiative recombination loss of 0.168 eV is further achieved in PM1:BTP-eC9 organic solar cell (19.10% efficiency), giving great promise to future organic solar cell research. Non-radiative recombination loss suppression is critical for boosting performance of organic solar cells. Here, the authors regulate self-organization of bulk-heterojunction in a non-monotonic manner, and achieve device efficiency over 19% with low non-radiative recombination loss down to 0.168 eV.
Controlled growth of perovskite layers with volatile alkylammonium chlorides
Controlling the crystallinity and surface morphology of perovskite layers by methods such as solvent engineering 1 , 2 and methylammonium chloride addition 3 – 7 is an effective strategy for achieving high-efficiency perovskite solar cells. In particular, it is essential to deposit α-formamidinium lead iodide (FAPbI 3 ) perovskite thin films with few defects due to their excellent crystallinity and large grain size. Here we report the controlled crystallization of perovskite thin films with the combination of alkylammonium chlorides (RACl) added to FAPbI 3 . The δ-phase to α-phase transition of FAPbI 3 and the crystallization process and surface morphology of the perovskite thin films coated with RACl under various conditions were investigated through in situ grazing-incidence wide-angle X-ray diffraction and scanning electron microscopy. RACl added to the precursor solution was believed to be easily volatilized during coating and annealing owing to dissociation into RA 0 and HCl with deprotonation of RA + induced by RA⋯H + -Cl − binding to PbI 2 in FAPbI 3 . Thus, the type and amount of RACl determined the δ-phase to α-phase transition rate, crystallinity, preferred orientation and surface morphology of the final α-FAPbI 3 . The resulting perovskite thin layers facilitated the fabrication of perovskite solar cells with a power-conversion efficiency of 26.08% (certified 25.73%) under standard illumination. In situ grazing-incidence wide-angle X-ray diffraction and scanning electron microscopy were used to evaluate the crystallization process and surface morphology of perovskite thin films coated with alkylammonium chlorides, which were used to fabricate high-efficiency perovskite solar cells.