Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,414 result(s) for "ABO system"
Sort by:
Genome-wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density
Abstract Context Estradiol is the primary female sex hormone and plays an important role for skeletal health in both sexes. Several enzymes are involved in estradiol metabolism, but few genome-wide association studies (GWAS) have been performed to characterize the genetic contribution to variation in estrogen levels. Objective Identify genetic loci affecting estradiol levels and estimate causal effect of estradiol on bone mineral density (BMD). Design We performed GWAS for estradiol in males (n = 147 690) and females (n = 163 985) from UK Biobank. Estradiol was analyzed as a binary phenotype above/below detection limit (175 pmol/L). We further estimated the causal effect of estradiol on BMD using Mendelian randomization. Results We identified 14 independent loci associated (P < 5 × 10−8) with estradiol levels in males, of which 1 (CYP3A7) was genome-wide and 7 nominally (P < 0.05) significant in females. In addition, 1 female-specific locus was identified. Most loci contain functionally relevant genes that have not been discussed in relation to estradiol levels in previous GWAS (eg, SRD5A2, which encodes a steroid 5-alpha reductase that is involved in processing androgens, and UGT3A1 and UGT2B7, which encode enzymes likely to be involved in estradiol elimination). The allele that tags the O blood group at the ABO locus was associated with higher estradiol levels. We identified a causal effect of high estradiol levels on increased BMD in both males (P = 1.58 × 10−11) and females (P = 7.48 × 10−6). Conclusion Our findings further support the importance of the body’s own estrogen to maintain skeletal health in males and in females.
Cell attachment protein VP8 of a human rotavirus specifically interacts with A-type histo-blood group antigen
This crystallographic study shows the attachment of human rotavirus VP8* to histo blood group A antigen, and suggests how changes within the structure of VP8* could allow switching from sialylated to non-sialylated glycan receptor. Rotavirus surface protein targets blood-group antigen Rotaviruses are the major pathogens of infantile gastroenteritis. They attach to the surfaces of cells through interactions with specific cellular glycans. Animal rotaviruses bind to glycans with terminal sialic acid, whereas human rotavirus strains are sialidase insensitive. Venkataram Prasad and colleagues now show that certain human rotavirus strains bind to and infect cells through A-type histo-blood group antigen (HBGA), suggesting that susceptibility to specific human rotavirus strains might be influenced by different blood-group antigens, a phenomenon reported in Helicobacter pylori and norovirus infection. Crystallographic studies show how HBGA binds to the attachment protein of human norovirus (VP8), and suggest how subtle changes in the structure of VP8 might allow receptor switching. As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans 1 , 2 , 3 , 4 . The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5 ) mediates such interactions. The existing paradigm is that ‘sialidase-sensitive’ animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas ‘sialidase-insensitive’ human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3 ). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies 1 , 3 , 6 , 7 , it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells 8 , and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori 9 and noroviruses 10 . Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world’s population.
A phenome-wide association study of ABO blood groups
Background ABO blood group is associated with differences in lifespan, cardiovascular disease, and some cancers, for reasons which are incompletely understood. To gain sex-specific additional insight about potential mechanisms driving these common conditions for future interventions, we characterized associations of ABO blood group antigen across the phenotype sex-specifically. Methods We performed a phenome-wide association study (PheWAS) assessing the association of tag single nucleotide polymorphisms (SNPs) for ABO blood group antigens (O, B, A 1 , and A 2 ) with 3873 phenotypes. Results The tag SNP for the O antigen was inversely associated with diseases of the circulatory system (particularly deep vein thrombosis (DVT)), total cholesterol, low-density lipoprotein cholesterol (LDL-C), and ovarian cancer, and positively associated with erythrocyte traits, leukocyte counts, diastolic blood pressure (DBP), and healthy body composition; the tag SNP for the A 1 antigen tended to have associations in reverse to O. Stronger associations were more apparent for men than women for DVT, DBP, leukocyte traits, and some body composition traits, whereas larger effect sizes were found for women than men for some erythrocyte and lipid traits. Conclusion Blood group has a complex association with cardiovascular diseases and its major risk factors, including blood pressure and lipids, as well as with blood cell traits and body composition, with some differences by sex. Lower LDL-C may underlie some of the benefits of blood group O, but the complexity of associations with blood group antigen suggests overlooked drivers of common chronic diseases.
ABO blood type and the risk of cancer – Findings from the Shanghai Cohort Study
ABO blood type is an inherited characteristic. The associations between ABO blood type and risk of all cancer and specific cancers were examined in a prospective cohort study of 18,244 Chinese men enrolled in 1986. During the 25 years of follow-up, 3,973 men developed cancer including 964 lung cancers, 624 colorectal cancers, 560 gastric cancers, 353 liver cancers, and 172 urinary bladder cancers. Hazard ratios (HR) for all cancer and specific cancers by ABO blood type were calculated using Cox proportional hazards models. Compared with blood type A, blood type B was associated with statistically significant reduced risk of all cancers (HR, 0.91, 95% CI:0.84, 0.99). Both blood types B and AB were associated with significantly lower risk of gastrointestinal cancer and colorectal cancer, respectively. Blood type B was also associated with significantly lower risk of stomach cancer and bladder cancer, while blood type AB was associated with significantly increased risk of liver cancer. By histological type, blood types B and AB were associated with lower risk of epidermoid carcinoma and adenocarcinoma, but were not associated with risk of sarcoma, lymphoma, leukemia or other cell types of cancer. The findings of this study support a role of genetic traits related to ABO blood type in the development of cancers in the gastrointestinal and urinary tracts.
Association Between ABO Blood Group System and COVID-19 Susceptibility in Wuhan
The ABO blood group system has been associated with multiple infectious diseases, including hepatitis B, dengue haemorrhagic fever and so on. Coronavirus disease 2019 (COVID-19) is a new respiratory infectious disease and the relationship between COVID-19 and ABO blood group system needs to be explored urgently. A hospital-based case-control study was conducted at Zhongnan Hospital of Wuhan University from 1 January 2020 to 5 March 2020. A total of 105 COVID-19 cases and 103 controls were included. The blood group frequency was tested with the chi-square statistic, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated between cases and controls. In addition, according to gender, the studied population was divided into two subgroups, and we assessed the association between cases and controls by gender. Finally, considering lymphopenia as a feature of COVID-19, the relationship between the ABO blood group and the lymphocyte count was determined in case samples. The frequencies of blood types A, B, AB, and O were 42.8, 26.7, 8.57, and 21.9%, respectively, in the case group. Association analysis between the ABO blood group and COVID-19 indicated that there was a statistically significant difference for blood type A ( = 0.04, OR = 1.33, 95% CI = 1.02-1.73) but not for blood types B, AB or O ( = 0.48, OR = 0.90, 95% CI = 0.66-1.23; = 0.61, OR = 0.88, 95% CI = 0.53-1.46; and = 0.23, OR = 0.82, 95% CI = 0.58-1.15, respectively). An analysis stratified by gender revealed that the association was highly significant between blood type A in the female subgroup ( = 0.02, OR = 1.56, 95% CI = 1.08-2.27) but not in the male subgroup ( = 0.51, OR = 1.14, 95% CI = 0.78-1.67). The average level of lymphocyte count was the lowest with blood type A in patients, however, compared with other blood types, there was still no significant statistical difference. Our findings provide epidemiological evidence that females with blood type A are susceptible to COVID-19. However, these research results need to be validated in future studies.
Multi-omics highlights ABO plasma protein as a causal risk factor for COVID-19
SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10–05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10–08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.
Red blood cell blood group A antigen level affects the ability of heparin and PfEMP1 antibodies to disrupt Plasmodium falciparum rosettes
Background The histo-blood group ABO system has been associated with adverse outcomes in COVID-19, thromboembolic diseases and Plasmodium falciparum malaria. An integral part of the severe malaria pathogenesis is rosetting, the adherence of parasite infected red blood cells (RBCs) to uninfected RBCs. Rosetting is influenced by the host’s ABO blood group (Bg) and rosettes formed in BgA have previously been shown to be more resilient to disruption by heparin and shield the parasite derived surface antigens from antibodies. However, data on rosetting in weak BgA subgroups is scarce and based on investigations of relatively few donors. Methods An improved high-throughput flow cytometric assay was employed to investigate rosetting characteristics in an extensive panel of RBC donor samples of all four major ABO Bgs, as well as low BgA expressing samples. Results All non-O Bgs shield the parasite surface antigens from strain-specific antibodies towards P. falciparum erythrocyte membrane protein 1 (PfEMP1). A positive correlation between A-antigen levels on RBCs and rosette tightness was observed, protecting the rosettes from heparin- and antibody-mediated disruption. Conclusions These results provide new insights into how the ABO Bg system affects the disease outcome and cautions against interpreting the results from the heterogeneous BgA phenotype as a single group in epidemiological and experimental studies. Graphical Abstract
A historical overview of advances in molecular genetic/genomic studies of the ABO blood group system
In 1990, 90 years after the discovery of ABO blood groups by Karl Landsteiner, my research team at the Molecular Biology Laboratory of the now-defunct Biomembrane Institute elucidated the molecular genetic basis of the ABO polymorphism. Henrik Clausen, Head of the Immunology Laboratory, initiated the project by isolating human group A transferase (AT), whose partial amino acid sequence was key to its success. Sen-itiroh Hakomori, the Scientific Director, provided all the institutional support. The characterization started from the 3 major alleles (A1, B, and O), and proceeded to the alleles of A2, A3, Ax and B3 subgroups and also to the cis-AB and B(A) alleles, which specify the expression of A and B antigens by single alleles. In addition to the identification of allele-specific single nucleotide polymorphism (SNP) variations, we also experimentally demonstrated their functional significance in glycosyltransferase activity and sugar specificity of the encoded proteins. Other scientists interested in blood group genes later characterized more than 250 ABO alleles. However, recent developments in next-generation sequencing have enabled the sequencing of millions of human genomes, transitioning from the era of genetics to the era of genomics. As a result, numerous SNP variations have been identified in the coding and noncoding regions of the ABO gene, making ABO one of the most studied loci for human polymorphism. As a tribute to Dr. Hakomori's scientific legacy, a historical overview in molecular genetic/genomic studies of the human ABO gene polymorphism is presented, with an emphasis on early discoveries made at his institute.
Enzymatic conversion of blood group B kidney prevents hyperacute antibody-mediated injuries in ABO-incompatible transplantation
Matching ABO blood group antigens between donors and recipients is critical to prevent hyperacute rejection in kidney transplantation. Enzymatic conversion of blood group antigens to the universal O type presents a promising strategy to overcome barriers in ABO-incompatible kidney transplantation. In this study, we employ α-galactosidase from Bacteroides fragilis to convert type B kidneys to type O during hypothermic machine perfusion. After 3 hours of perfusion with enzyme, more than 95% of blood group B antigens in the kidney endothelium are effectively removed. Subsequently, enzyme-treated kidneys are protected from antibody-mediated injuries in an ex vivo simulation of ABO-incompatible kidney transplantation. Encouraged by these results, a discarded type B kidney, following enzymatic conversion, is transplanted into a type O brain-dead recipient with high titer of anti-B antibody. The allograft survives for 63 hours without hyperacute rejection. Blood group B antigens re-express within 48 hours, with histopathological analyses indicating no evidence of antibody-mediated rejection. This enzymatic conversion approach holds the potential to broaden the practice of ABO-incompatible kidney transplantation, decrease waiting times and facilitate equitable organ allocation. The complexity of matching ABO blood groups presents a formidable barrier to successful transplantation. Here, the authors show that an enzymatic converted type B kidney was transplanted into a type O brain-dead recipient without hyperacute rejection.
Emergence of an erythroid cell-specific regulatory region in ABO intron 1 attributable to A- or B-antigen expression on erythrocytes in Hominoidea
A- and B-antigens are present on red blood cells (RBCs) as well as other cells and secretions in Hominoidea including humans and apes such as chimpanzees and gibbons, whereas expression of these antigens on RBCs is subtle in monkeys such as Japanese macaques. Previous studies have indicated that H-antigen expression has not completely developed on RBCs in monkeys. Such antigen expression requires the presence of H-antigen and A- or B-transferase expression in cells of erythroid lineage, although whether or not ABO gene regulation is associated with the difference of A- or B-antigen expression between Hominoidea and monkeys has not been examined. Since it has been suggested that ABO expression on human erythrocytes is dependent upon an erythroid cell-specific regulatory region or the + 5.8-kb site in intron 1, we compared the sequences of ABO intron 1 among non-human primates, and demonstrated the presence of sites orthologous to the + 5.8-kb site in chimpanzees and gibbons, and their absence in Japanese macaques. In addition, luciferase assays revealed that the former orthologues enhanced promoter activity, whereas the corresponding site in the latter did not. These results suggested that the A- or B-antigens on RBCs might be ascribed to emergence of the + 5.8-kb site or the corresponding regions in ABO through genetic evolution.