Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,931 result(s) for "Acute myelocytic leukemia"
Sort by:
Immune escape and immunotherapy of acute myeloid leukemia
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Somatic mutations precede acute myeloid leukemia years before diagnosis
The pattern of somatic mutations observed at diagnosis of acute myeloid leukemia (AML) has been well-characterized. However, the premalignant mutational landscape of AML and its impact on risk and time to diagnosis is unknown. Here we identified 212 women from the Women’s Health Initiative who were healthy at study baseline, but eventually developed AML during follow-up (median time: 9.6 years). Deep sequencing was performed on peripheral blood DNA of these cases and compared to age-matched controls that did not develop AML. We discovered that mutations in IDH1 , IDH2 , TP53 , DNMT3A , TET2 and spliceosome genes significantly increased the odds of developing AML. All subjects with TP53 mutations ( n  = 21 out of 21 patients) and IDH1 and IDH2 ( n  = 15 out of 15 patients) mutations eventually developed AML in our study. The presence of detectable mutations years before diagnosis suggests that there is a period of latency that precedes AML during which early detection, monitoring and interventional studies should be considered. Somatic mutations detected years before diagnosis increase the odds of development of acute myeloid leukemia in women.
Targeting FLT3 mutations in AML: review of current knowledge and evidence
Genomic investigations of acute myeloid leukemia (AML) have demonstrated that several genes are recurrently mutated, leading to new genomic classifications, predictive biomarkers, and new therapeutic targets. Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of all AML cases, with the internal tandem duplication (ITD) representing the most common type of FLT3 mutation (FLT3-ITD; approximately 25% of all AML cases). FLT3-ITD is a common driver mutation that presents with a high leukemic burden and confers a poor prognosis in patients with AML. The prognostic value of a FLT3 mutation in the tyrosine kinase domain (FLT3-TKD), which has a lower incidence in AML (approximately 7–10% of all cases), is uncertain. Accumulating evidence demonstrates that FLT3 mutational status evolves throughout the disease continuum. This so-called clonal evolution, together with the identification of FLT3-ITD as a negative prognostic marker, serves to highlight the importance of FLT3-ITD testing at diagnosis and again at relapse. Earlier identification of FLT3 mutations will help provide a better understanding of the patient’s disease and enable targeted treatment that may help patients achieve longer and more durable remissions. First-generation FLT3 inhibitors developed for clinical use are broad-spectrum, multikinase inhibitors; however, next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicities associated with off-target effects. Primary and secondary acquired resistance to FLT3 inhibitors remains a challenge and provides a rationale for combining FLT3 inhibitors with other therapies, both conventional and investigational. This review focuses on the pathological and prognostic role of FLT3 mutations in AML, clinical classification of the disease, recent progress with next-generation FLT3 inhibitors, and mechanisms of resistance to FLT3 inhibitors.
Prediction of acute myeloid leukaemia risk in healthy individuals
The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure 1 . The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion 2 , 3 . However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH) 4 – 8 . Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention. Individuals who are at high risk of developing acute myeloid leukaemia can be identified years before diagnosis using genetic information from blood samples.
Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Leukemia stem cells (LSCs) drive the initiation and perpetuation of AML, are quantifiably associated with worse clinical outcomes, and often persist after conventional chemotherapy resulting in relapse 1 – 5 . In this report, we show that treatment of older patients with AML with the B cell lymphoma 2 (BCL-2) inhibitor venetoclax in combination with azacitidine results in deep and durable remissions and is superior to conventional treatments. We hypothesized that these promising clinical results were due to targeting LSCs. Analysis of LSCs from patients undergoing treatment with venetoclax + azacitidine showed disruption of the tricarboxylic acid (TCA) cycle manifested by decreased α-ketoglutarate and increased succinate levels, suggesting inhibition of electron transport chain complex II. In vitro modeling confirmed inhibition of complex II via reduced glutathionylation of succinate dehydrogenase. These metabolic perturbations suppress oxidative phosphorylation (OXPHOS), which efficiently and selectively targets LSCs. Our findings show for the first time that a therapeutic intervention can eradicate LSCs in patients with AML by disrupting the metabolic machinery driving energy metabolism, resulting in promising clinical activity in a patient population with historically poor outcomes. Targeting of mitochondrial metabolism in combination with BCL-2 inhibition eradicates leukemia stem cells and induces long-lasting responses in patients with acute myeloid leukemia.
Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation
Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation. In two independent patient cohorts we confirmed the deregulation of multiple costimulatory ligands on AML blasts at post-transplantation relapse (PD-L1, B7-H3, CD80, PVRL2), mirrored by concomitant changes in circulating donor T cells. Likewise, we documented the frequent loss of surface expression of HLA-DR, -DQ and -DP on leukemia cells, due to downregulation of the HLA class II regulator CIITA. We show that loss of HLA class II expression and upregulation of inhibitory checkpoint molecules represent alternative modalities to abolish AML recognition from donor-derived T cells, and can be counteracted by interferon-γ or checkpoint blockade, respectively. Our results demonstrate that the deregulation of pathways involved in T cell-mediated allorecognition is a distinctive feature and driver of AML relapses after allo-HCT, which can be rapidly translated into personalized therapies.Post-transplantation relapse in acute myeloid leukemia patients without genomic loss of HLA is driven by transcriptional alterations in antigen presentation and T cell costimulation genes.
Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome
Glasdegib is a Hedgehog pathway inhibitor. This phase II, randomized, open-label, multicenter study (ClinicalTrials.gov, NCT01546038) evaluated the efficacy of glasdegib plus low-dose cytarabine (LDAC) in patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome unsuitable for intensive chemotherapy. Glasdegib 100 mg (oral, QD) was administered continuously in 28-day cycles; LDAC 20 mg (subcutaneous, BID) was administered for 10 per 28 days. Patients (stratified by cytogenetic risk) were randomized (2:1) to receive glasdegib/LDAC or LDAC. The primary endpoint was overall survival. Eighty-eight and 44 patients were randomized to glasdegib/LDAC and LDAC, respectively. Median (80% confidence interval [CI]) overall survival was 8.8 (6.9–9.9) months with glasdegib/LDAC and 4.9 (3.5–6.0) months with LDAC (hazard ratio, 0.51; 80% CI, 0.39–0.67, P = 0.0004). Fifteen (17.0%) and 1 (2.3%) patients in the glasdegib/LDAC and LDAC arms, respectively, achieved complete remission (P < 0.05). Nonhematologic grade 3/4 all-causality adverse events included pneumonia (16.7%) and fatigue (14.3%) with glasdegib/LDAC and pneumonia (14.6%) with LDAC. Clinical efficacy was evident across patients with diverse mutational profiles. Glasdegib plus LDAC has a favorable benefit–risk profile and may be a promising option for AML patients unsuitable for intensive chemotherapy.
An inhibitor of oxidative phosphorylation exploits cancer vulnerability
Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors. A new inhibitor targeting the mitochondrial complex I shows antitumor activity in preclinical models of acute myeloid leukemia and glioblastoma relying on oxidative phosphorylation.
LSD1/KDM1A inhibitors in clinical trials: advances and prospects
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions
A comprehensive molecular analysis of almost 1,000 pediatric subjects with acute myeloid leukemia (AML) uncovers widespread differences in pediatric AML as compared to adult AML, including a higher frequency of structural variants and different mutational patterns and epigenetic signatures. Future studies are needed to characterize the functional relevance of these alterations and to explore age-tailored therapies to improve disease control in younger patients. We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1 , ZEB2 and ELF1 , were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53 , which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2 , FLT3 and CBL and recurrent mutations in MYC -ITD, NRAS , KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger–encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.