Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
229
result(s) for
"Adjuvanticity"
Sort by:
Polymyxins as Novel and Safe Mucosal Adjuvants to Induce Humoral Immune Responses in Mice. e61643
2013
There is currently an urgent need to develop safe and effective adjuvants for enhancing vaccine-induced antigen-specific immune responses. We demonstrate here that intranasal immunization with clinically used polypeptide antibiotics, polymyxin B (PMB) and colistin (CL), along with ovalbumin (OVA), increases OVA-specific humoral immune responses in a dose-dependently manner at both mucosal and systemic compartments. Enhanced immunity by boosting was found to persist during 8 months of observation. Moreover, mice intranasally immunized with OVA plus various doses of PMB or CL showed neither inflammatory responses in the nasal cavity and olfactory bulbs nor renal damages, compared to those given OVA alone. These data suggest that polymyxins may serve as novel and safe mucosal adjuvants to induce humoral immune responses. The polymyxin adjuvanticity was found to be independent of endotoxins liberated by its bactericidal activity, as indicated by similar enhancing effects of PMB in lipopolysaccharide (LPS)-hyporesponsive and LPS-susceptible mice. However, despite the presence of preexisting anti-PMB antibodies, we observed no reduction in the adjuvant function of polymyxins when they were given intranasally. Furthermore, the titers of OVA-specific Abs in mice intranasally immunized with OVA plus PMB or CL were significantly higher than those in mice administered with polymyxin analogues, such as polymyxin B nonapeptide and colistin methanesulfonate. The levels of released beta -hexosaminidase and histamine in mast cell culture supernatants stimulated by PMB or CL were also significantly higher than those stimulated by their analogues. These results suggest that both the hydrophobic carbon chain and hydrophilic cationic cyclic peptide contribute to the mucosal adjuvanticity of PMB and CL.
Journal Article
Immunogenic cell death in cancer and infectious disease
2017
Key Points
The immunogenicity of cell death is determined by its antigenicity and its adjuvanticity.
Cells infected by pathogens as well as cancer cells exhibit accrued antigenicity.
Stress responses in dying cells cause the emission of adjuvant-like danger signals.
Different sets of danger signals are associated with distinct variants of immunogenic cell death.
Both pathogens and cancer cells interrupt danger signalling for their own benefit.
Reinstating the immunogenicity of cell death holds promise for anticancer therapy.
Initiation of an adaptive immune response depends on the detection of both antigenic epitopes and adjuvant signals. Infectious pathogens and cancer cells often avoid immune detection by limiting the release of danger signals from dying cells. When is cell death immunogenic and what are the pathophysiological implications of this process?
Immunogenicity depends on two key factors: antigenicity and adjuvanticity. The presence of exogenous or mutated antigens explains why infected cells and malignant cells can initiate an adaptive immune response provided that the cells also emit adjuvant signals as a consequence of cellular stress and death. Several infectious pathogens have devised strategies to control cell death and limit the emission of danger signals from dying cells, thereby avoiding immune recognition. Similarly, cancer cells often escape immunosurveillance owing to defects in the molecular machinery that underlies the release of endogenous adjuvants. Here, we review current knowledge on the mechanisms that underlie the activation of immune responses against dying cells and their pathophysiological relevance.
Journal Article
Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity
by
Legrand, Arnaud J.
,
Meier, Pascal
,
Silke, John
in
631/67/1059/2325
,
631/80/82/2344
,
Adjuvanticity
2024
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis — a largely immunologically silent form of cell death — there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8
+
T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
In this Review, Meier et al. discuss the molecular mechanisms of necroptosis, delineate how this form of immunogenic cell death activates antitumour immune responses and explore the opportunities and limitations of targeting necroptosis for anticancer therapy.
Journal Article
Detection of immunogenic cell death and its relevance for cancer therapy
2020
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Journal Article
Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity
2019
In conjugate, inactivated, recombinant, and toxoid vaccines, adjuvants are extensively and essentially used for enhanced and long-lasting protective immune responses. Depending on the type of diseases and immune responses required, adjuvants with different design strategies are developed. With aluminum salt-based adjuvants as the most used ones in commercial vaccines, other limited adjuvants, e.g., AS01, AS03, AS04, CpG ODN, and MF59, are used in FDA-approved vaccines for human use. In this paper, we review the uses of different adjuvants in vaccines including the ones used in FDA-approved vaccines and vaccines under clinical investigations. We discuss how adjuvants with different formulations could affect the magnitude and quality of adaptive immune response for optimized protection against specific pathogens. We emphasize the molecular mechanisms of various adjuvants, with the aim to establish structure-activity relationships (SARs) for designing more effective and safer adjuvants for both preventative and therapeutic vaccines.
Journal Article
Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines
by
Lundgreen, Kendall
,
Xu, Junchao
,
Knox, James J.
in
631/61/350/354
,
631/61/54/152
,
Adaptive immunity
2023
Lipid nanoparticle (LNP)-formulated messenger RNA (mRNA) vaccineare a promising platform to prevent infectious diseases as demonstrated by the recent success of SARS-CoV-2 mRNA vaccines. To avoid immune recognition and uncontrolled inflammation, nucleoside-modified mRNA is used. However, such modification largely abrogates the innate immune responses that are critical to orchestrating robust adaptive immunity. Here we develop an LNP component—an adjuvant lipidoid—that can enhance the adjuvanticity of mRNA-LNP vaccines. Our results show that partial substitution of ionizable lipidoid with adjuvant lipidoid not only enhanced mRNA delivery, but also endowed LNPs with Toll-like receptor 7/8-agonistic activity, which significantly increased the innate immunity of the SARS-CoV-2 mRNA-LNP vaccine with good tolerability in mice. Our optimized vaccine elicits potent neutralizing antibodies against multiple SARS-CoV-2 pseudovirus variants, strong Th1-biased cellular immunity, and robust B cell and long-lived plasma cell responses. Importantly, this adjuvant lipidoid substitution strategy works successfully in a clinically relevant mRNA-LNP vaccine, demonstrating its translational potential.
A lipid nanoparticle (LNP) component—an adjuvant lipidoid—is developed to enhance the adjuvanticity of LNPs, which significantly increases the innate and adaptive responses of the COVID-19 mRNA vaccines with good tolerability in mice.
Journal Article
Making innate sense of mRNA vaccine adjuvanticity
2022
mRNA vaccines such as those used to prevent COVID-19 owe part of their success to methylation that masks immunostimulatory properties of the mRNA, but the immunological mechanisms of adjuvanticity are unclear. Two new studies reveal distinct mechanisms for innate sensing of this hidden adjuvant.
Journal Article
Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death
2020
Induction of tumor cell death is the therapeutic goal for most anticancer drugs. Yet, a mode of drug-induced cell death, known as immunogenic cell death (ICD), can propagate antitumoral immunity to augment therapeutic efficacy. Currently, the molecular hallmark of ICD features the release of damage-associated molecular patterns (DAMPs) by dying cancer cells. Here, we show that gemcitabine, a standard chemotherapy for various solid tumors, triggers hallmark immunostimualtory DAMP release (e.g., calreticulin, HSP70, and HMGB1); however, is unable to induce ICD. Mechanistic studies reveal gemcitabine concurrently triggers prostaglandin E
2
release as an inhibitory DAMP to counterpoise the adjuvanticity of immunostimulatory DAMPs. Pharmacological blockade of prostaglandin E
2
biosythesis favors CD103
+
dendritic cell activation that primes a Tc1-polarized CD8
+
T cell response to bolster tumor rejection. Herein, we postulate that an intricate balance between immunostimulatory and inhibitory DAMPs could determine the outcome of drug-induced ICD and pose COX-2/prostaglandin E
2
blockade as a strategy to harness ICD.
Most chemotherapeutic agents, including gemcitabine, do not elicit immunogenic cell death, a phenomenon associated with the release of damage-associated molecule patterns (DAMPs). Here, the authors show that gemcitabine-treated dying cancer cells express hallmark DAMPs but their immunogenic properties are hindered by the concomitant release of the inhibitory DAMP PGE
2
.
Journal Article
Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination
by
Bridgewood, Charlie
,
Brodavka, Michal
,
Hijazi, Nizar
in
adenoviral vector-based vaccine
,
Adjuvanticity
,
Antigens
2021
Background: Infectious diseases and vaccines can occasionally cause new-onset or flare of immune-mediated diseases (IMDs). The adjuvanticity of the available SARS-CoV-2 vaccines is based on either TLR-7/8 or TLR-9 agonism, which is distinct from previous vaccines and is a common pathogenic mechanism in IMDs. Methods: We evaluated IMD flares or new disease onset within 28-days of SARS-CoV-2 vaccination at five large tertiary centres in countries with early vaccination adoption, three in Israel, one in UK, and one in USA. We assessed the pattern of disease expression in terms of autoimmune, autoinflammatory, or mixed disease phenotype and organ system affected. We also evaluated outcomes. Findings: 27 cases included 17 flares and 10 new onset IMDs. 23/27 received the BNT - 162b2 vaccine, 2/27 the mRNA-1273 and 2/27 the ChAdOx1 vaccines. The mean age was 54.4 ± 19.2 years and 55% of cases were female. Among the 27 cases, 21 (78%) had at least one underlying autoimmune/rheumatic disease prior the vaccination. Among those patients with a flare or activation, four episodes occurred after receiving the second-dose and in one patient they occurred both after the first and the second-dose. In those patients with a new onset disease, two occurred after the second-dose and in one patient occurred both after the first (new onset) and second-dose (flare). For either dose, IMDs occurred on average 4 days later. Of the cases, 20/27 (75%) were mild to moderate in severity. Over 80% of cases had excellent resolution of inflammatory features, mostly with the use of corticosteroid therapy. Other immune-mediated conditions included idiopathic pericarditis (n = 2), neurosarcoidosis with small fiber neuropathy (n = 1), demyelination (n = 1), and myasthenia gravis (n = 2). In 22 cases (81.5%), the insurgence of Adverse event following immunization (AEFI)/IMD could not be explained based on the drug received by the patient. In 23 cases (85.2%), AEFI development could not be explained based on the underlying disease/co-morbidities. Only in one case (3.7%), the timing window of the insurgence of the side effect was considered not compatible with the time from vaccine to flare. Interpretation: Despite the high population exposure in the regions served by these centers, IMDs flares or onset temporally-associated with SARS-CoV-2 vaccination appear rare. Most are moderate in severity and responsive to therapy although some severe flares occurred. Funding: none.
Journal Article
mRNA therapeutics in cancer immunotherapy
by
Beck, Jan D.
,
Sahin, Ugur
,
Vormehr, Mathias
in
2021 mRNA Special Issue
,
Adjuvanticity
,
Animals
2021
Synthetic mRNA provides a template for the synthesis of any given protein, protein fragment or peptide and lends itself to a broad range of pharmaceutical applications, including different modalities of cancer immunotherapy. With the ease of rapid, large scale Good Manufacturing Practice-grade mRNA production, mRNA is ideally poised not only for off-the shelf cancer vaccines but also for personalized neoantigen vaccination. The ability to stimulate pattern recognition receptors and thus an anti-viral type of innate immune response equips mRNA-based vaccines with inherent adjuvanticity. Nucleoside modification and elimination of double-stranded RNA can reduce the immunomodulatory activity of mRNA and increase and prolong protein production. In combination with nanoparticle-based formulations that increase transfection efficiency and facilitate lymphatic system targeting, nucleoside-modified mRNA enables efficient delivery of cytokines, costimulatory receptors, or therapeutic antibodies. Steady but transient production of the encoded bioactive molecule from the mRNA template can improve the pharmacokinetic, pharmacodynamic and safety properties as compared to the respective recombinant proteins. This may be harnessed for applications that benefit from a higher level of expression control, such as chimeric antigen receptor (CAR)-modified adoptive T-cell therapies. This review highlights the advancements in the field of mRNA-based cancer therapeutics, providing insights into key preclinical developments and the evolving clinical landscape.
Journal Article