Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
406 result(s) for "Aerobiosis - drug effects"
Sort by:
Superoxide dismutase is dispensable for normal animal lifespan
Reactive oxygen species (ROS) are toxic oxygen-containing molecules that can damage multiple components of the cell and have been proposed to be the primary cause of aging. The antioxidant enzyme superoxide dismutase (SOD) is the only eukaryotic enzyme capable of detoxifying superoxide, one type of ROS. The fact that SOD is present in all aerobic organisms raises the question as to whether SOD is absolutely required for animal life and whether the loss of SOD activity will result in decreased lifespan. Here we use the genetic model organism Caenorhabditis elegans to generate an animal that completely lacks SOD activity (sod-12345 worms). We show that sod-12345 worms are viable and exhibit a normal lifespan, despite markedly increased sensitivity to multiple stresses. This is in stark contrast to what is observed in other genetic model organisms where the loss of a single sod gene can result in severely decreased survival. Investigating the mechanism underlying the normal lifespan of sod-12345 worms reveals that their longevity results from a balance between the prosurvival signaling and the toxicity of superoxide. Overall, our results demonstrate that SOD activity is dispensable for normal animal lifespan but is required to survive acute stresses. Moreover, our findings indicate that maintaining normal stress resistance is not crucial to the rate of aging.
Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis
Shift metabolism profile from mitochondrial oxidative phosphorylation to aerobic glycolysis (Warburg effect) is a key for tumor cell growth and metastasis. Therefore, suppressing the tumor aerobic glycolysis shows a great promise in anti-tumor therapy. In the present study, we study the role of shikonin, a naphthoquinone isolated from the traditional Chinese medicine Lithospermum, in inhibiting tumor aerobic glycolysis and thus tumor growth. We found that shikonin dose-dependently inhibited glucose uptake and lactate production in Lewis lung carcinoma (LLC) and B16 melanoma cells, confirming the inhibitory effect of shikonin on tumor aerobic glycolysis. Treatment of shikonin also decreased tumor cell ATP production. Furthermore, pyruvate kinase M2 (PKM2) inhibitor or activator respectively altered the effect of shikonin on tumor cell aerobic glycolysis, suggesting that suppression of cell aerobic glycolysis by shikonin is through decreasing PKM2 activity. Western blot analysis confirmed that shikonin treatment reduced tumor cell PKM2 phosphorylation though did not reduce total cellular PKM2 level. In vitro assay also showed that shikonin treatment significantly promoted tumor cell apoptosis compared to untreated control cells. Finally, when mice implanted with B16 cells were administered with shikonin or control vehicle, only shikonin treatment significantly decreased B16 tumor cell growth. In conclusion, this study demonstrates that shikonin inhibits tumor growth in mice by suppressing PKM2-mediated aerobic glycolysis.
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability.
Energy Starved Candidatus Pelagibacter Ubique Substitutes Light-Mediated ATP Production for Endogenous Carbon Respiration
Previous studies have demonstrated that Candidatus Pelagibacter ubique, a member of the SAR11 clade, constitutively expresses proteorhodopsin (PR) proteins that can function as light-dependent proton pumps. However, exposure to light did not significantly improve the growth rate or final cell densities of SAR11 isolates in a wide range of conditions. Thus, the ecophysiological role of PR in SAR11 remained unresolved. We investigated a range of cellular properties and here show that light causes dramatic changes in physiology and gene expression in Cand. P. ubique cells that are starved for carbon, but provides little or no advantage during active growth on organic carbon substrates. During logarithmic growth there was no difference in oxygen consumption by cells in light versus dark. Energy starved cells respired endogenous carbon in the dark, becoming spheres that approached the minimum predicted size for cells, and produced abundant pili. In the light, energy starved cells maintained size, ATP content, and higher substrate transport rates, and differentially expressed nearly 10% of their genome. These findings show that PR is a vital adaptation that supports Cand. P. ubique metabolism during carbon starvation, a condition that is likely to occur in the extreme conditions of ocean environments.
The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth
Hydrogen sulfide (H 2 S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli , generate H 2 S and encounter high H 2 S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O 2 -dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo 3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo 3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC 50  = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O 2 -consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo 3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O 2 -consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed.
Adaptation of aerobic respiration to low O2 environments
Aerobic respiration in bacteria, Archaea, and mitochondria is performed by oxygen reductase members of the heme-copper oxidoreductase superfamily. These enzymes are redox-driven proton pumps which conserve part of the free energy released from oxygen reduction to generate a proton motive force. The oxygen reductases can be divided into three main families based on evolutionary and structural analyses (A-, B- and C-families), with the B- and C-families evolving after the A-family. The A-family utilizes two proton input channels to transfer protons for pumping and chemistry, whereas the B- and C-families require only one. Generally, the B- and C-families also have higher apparent oxygen affinities than the A-family. Here we use whole cell proton pumping measurements to demonstrate differential proton pumping efficiencies between representatives of the A-, B-, and C-oxygen reductase families. The A-family has a coupling stoichiometry of 1 H+/e-, whereas the B- and C-families have coupling stoichiometries of 0.5 H+/e-. The differential proton pumping stoichiometries, along with differences in the structures of the proton-conducting channels, place critical constraints on models of the mechanism of proton pumping. Most significantly, it is proposed that the adaptation of aerobic respiration to low oxygen environments resulted in a concomitant reduction in energy conservation efficiency, with important physiological and ecological consequences.
Galactose Enhances Oxidative Metabolism and Reveals Mitochondrial Dysfunction in Human Primary Muscle Cells
Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.
Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth
Understanding the specific response of yeast cells to environmental stress factors is the starting point for selecting the conditions of adaptive culture in order to obtain a yeast line with increased resistance to a given stress factor. The aim of the study was to evaluate the specific cellular response of Saccharomyces cerevisiae strain Ethanol Red to stress caused by toxic by-products generated during the pretreatment of lignocellulose, such as levulinic acid, 5-hydroxymethylfurfural, furfural, ferulic acid, syringaldehyde and vanillin. The presence of 5-hydroxymethylfurfural at the highest analyzed concentration (5704.8 ± 249.3 mg/L) under aerobic conditions induced the overproduction of ergosterol and trehalose. On the other hand, under anaerobic conditions (during the alcoholic fermentation), a decrease in the biosynthesis of these environmental stress indicators was observed. The tested yeast strain was able to completely metabolize 5-hydroxymethylfurfural, furfural, syringaldehyde and vanillin, both under aerobic and anaerobic conditions. Yeast cells reacted to the presence of furan aldehydes by overproducing Hsp60 involved in the control of intracellular protein folding. The results may be helpful in optimizing the process parameters of second-generation ethanol production, in order to reduce the formation and toxic effects of fermentation inhibitors.
Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis
Beta-alanine supplementation (BA) has a positive impact on physical performance. However, evidence showing a benefit of this amino acid in aerobic–anaerobic transition zones is scarce and the results controversial. The aim of this systematic review and meta-analysis is to analyze the effects of BA supplementation on physical performance in aerobic–anaerobic transition zones. At the same time, the effect of different dosages and durations of BA supplementation were identified. The search was designed in accordance with the PRISMA® guidelines for systematic reviews and meta-analyses and performed in Web of Science (WOS), Scopus, SPORTDiscus, PubMed, and MEDLINE between 2010 and 2020. The methodological quality and risk of bias were evaluated with the Cochrane Collaboration tool. The main variables were the Time Trial Test (TTT) and Time to Exhaustion (TTE) tests, the latter separated into the Limited Time Test (LTT) and Limited Distance Test (LDT). The analysis was carried out with a pooled standardized mean difference (SMD) through Hedges’ g test (95% CI). Nineteen studies were included in the systematic review and meta-analysis, revealing a small effect for time in the TTT (SMD, −0.36; 95% CI, −0.87–0.16; I2 = 59%; p = 0.010), a small effect for LTT (SMD, 0.25; 95% CI, −0.01–0.51; I2 = 0%; p = 0.53), and a large effect for LDT (SMD, 4.27; 95% CI, −0.25–8.79; I2 = 94%; p = 0.00001). BA supplementation showed small effects on physical performance in aerobic–anaerobic transition zones. Evidence on acute supplementation is scarce (one study); therefore, exploration of acute supplementation with different dosages and formats on physical performance in aerobic–anaerobic transition zones is needed.
Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils
BACKGROUND AND AIMS: The lack of knowledge about key traits in field environments is a major constraint to germplasm improvement and crop management because waterlogging-prone environments are highly diverse and complex, and the mechanisms of tolerance to waterlogging include a large range of traits. A model is proposed that waterlogging tolerance is a product of tolerance to anaerobiosis and high microelement concentrations. This is further evaluated with the aim of prioritizing traits required for waterlogging tolerance of wheat in the field. METHODS: Waterlogging tolerance mechanisms of wheat are evaluated in a range of diverse environments through a review of past research in Australia and India; this includes selected soils and plant data, including plant growth under waterlogged and drained conditions in different environments. Measurements focus on changes in redox potential and concentrations of diverse elements in soils and plants during waterlogging. KEY RESULTS: (a) Waterlogging tolerance of wheat in one location often does not relate to another, and (b) element toxicities are often a major constraint in waterlogged environments. Important element toxicities in different soils during waterlogging include Mn, Fe, Na, Al and B. This is the first time that Al and B toxicities have been indicated for wheat in waterlogged soils in India. These results support and extend the well-known interactions of salinity/Na and waterlogging/hypoxia tolerance. CONCLUSIONS: Diverse element toxicities (or deficiencies) that are exacerbated during waterlogging are proposed as a major reason why waterlogging tolerance at one site is often not replicated at another. Recommendations for germplasm improvement for waterlogging tolerance include use of inductively coupled plasma analyses of soils and plants.