Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,064
result(s) for
"Aging - Sweden"
Sort by:
Healthy Aging in Sociocultural Context
2013,2012
Healthy Aging in Sociocultural Context examines two emerging trends facing countries throughout the world: population aging and population diversity. It makes a unique contribution to our understanding of these timely issues by examining their implications for healthy aging, a topic of increasing importance to policy-makers, planners, researchers, families, and individuals of all ages.
The book focuses on three countries that provide important examples of these emerging global trends - Japan, Sweden, and the United States. Japan and Sweden are at the forefront in terms of healthy life expectancies, while the United States represents a country with considerable diversity. Examining these three countries together provides a unique opportunity to address questions such as the following: How can we understand differences in healthy life expectancy among different countries? What role might diversity play? And how might these effects change as geographic mobility increases diversity, even among societies that historically have been relatively homogeneous?
Social Security Programs and Retirement around the World
2012
In nearly every industrialized country, large aging populations and increased life expectancy have placed enormous pressure on social security programs—and, until recently, the pressure has been compounded by a trend toward retirement at an earlier age. With a larger fraction of the population receiving benefits, in coming decades social security in many countries may have to be reformed in order to remain financially viable.
This volume offers a cross-country analysis of the effects of disability insurance programs on labor force participation by older workers. Drawing on measures of health that are comparable across countries, the authors explore the extent to which differences in the labor force are determined by disability insurance programs and to what extent disability insurance reforms are prompted by the circumstances of a country's elderly population.
Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up
2020
Biological age measurements (BAs) assess aging-related physiological change and predict health risks among individuals of the same chronological age (CA). Multiple BAs have been proposed and are well studied individually but not jointly. We included 845 individuals and 3973 repeated measurements from a Swedish population-based cohort and examined longitudinal trajectories, correlations, and mortality associations of nine BAs across 20 years follow-up. We found the longitudinal growth of functional BAs accelerated around age 70; average levels of BA curves differed by sex across the age span (50–90 years). All BAs were correlated to varying degrees; correlations were mostly explained by CA. Individually, all BAs except for telomere length were associated with mortality risk independently of CA. The largest effects were seen for methylation age estimators (GrimAge) and the frailty index (FI). In joint models, two methylation age estimators (Horvath and GrimAge) and FI remained predictive, suggesting they are complementary in predicting mortality.
Everyone ages, but how aging affects health varies from person to person. This means that how old someone seems or feels does not always match the number of years they have been alive; in other words, someone’s “biological age” can often differ from their “chronological age”.
Scientists are now looking at the physiological changes related to aging to better predict who is at the greatest risk of age-related health problems. Several measurements of biological age have been put forward to capture information about various age-related changes. For example, some measurements look at changes to DNA molecules, while others measure signs of frailty, or deterioration in cognitive or physical abilities. However, to date, most studies into measures of biological age have looked at them individually and less is known about how these physiological changes interact, which is likely to be important.
Now, Li et al. have looked at data on nine different measures of biological age in a group of 845 Swedish adults, aged between 50 and 90, that was collected several times over a follow-up period of about 20 years. The dataset also gave details of the individuals’ birth year, sex, height, weight, smoking status, and education. The year of death was also collected from national registers for all individual in the group who had since died.
Li et al. found that all nine biological age measures could be used to explain the risk of individuals in the group dying during the follow-up period. In other words, when comparing individuals with the same chronological age in the group under study, the person with a higher biological age measure was more likely to die earlier. The analysis also revealed that biological aging appears to accelerate as individuals approach 70 years old, and that there are noticeable differences in the aging process between men and women.
Lastly, when combining all nine biological age measures, some of them worked better than others. Measurements of methylation groups added to DNA (known as DNA methylation age) and frailty (the frailty index) led to improved predictions for an individual’s risk of death. Ultimately, if future studies confirm these results for measures from single individuals, DNA methylation and the frailty index may be used to help identify people who may benefit the most from interventions to prevent age-related health conditions.
Journal Article
Integration of molecular profiles in a longitudinal wellness profiling cohort
2020
An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, the authors sample a longitudinal wellness cohort and analyse blood molecular profiles as well as gut microbiota composition.
Journal Article
An underappreciated peculiarity of late-life human mortality kinetics assessed through the lens of a generalization of the Gompertz-Makeham law
2024
Much attention in biogerontology is paid to the deceleration of mortality rate increase with age by the end of a species-specific lifespan, e.g. after ca. 90 years in humans. Being analyzed based on the Gompertz law µ(t)=µ0e^γt with its inbuilt linearity of the dependency of lnµ on t, this is commonly assumed to reflect the heterogeneity of populations where the frailer subjects die out earlier thus increasing the proportions of those whose dying out is slower and leading to decreases in the demographic rates of aging. Using Human Mortality Database data related to France, Sweden and Japan in five periods 1920, 1950, 1980, 2018 and 2020 and to the cohorts born in 1920, it is shown by LOESS smoothing of the lnµ-vs-t plots and constructing the first derivatives of the results that the late-life deceleration of the life-table aging rate (LAR) is preceded by an acceleration. It starts at about 65 years and makes LAR at about 85 years to become 30% higher than it was before the acceleration. Thereafter, LAR decreases and reaches the pre-acceleration level at ca. 90 years. This peculiarity cannot be explained by the predominant dying out of frailer subjects at earlier ages. Its plausible explanation may be the acceleration of the biological aging in humans at ages above 65–70 years, which conspicuously coincide with retirement. The decelerated biological aging may therefore contribute to the subsequent late-life LAR deceleration. The biological implications of these findings are discussed in terms of a generalized Gompertz-Makeham law µ(t) = C(t)+µ0e^f(t).
Journal Article
Dynamics of life expectancy and life span equality
by
Villavicencio, Francisco
,
Kjærgaard, Søren
,
Vaupel, James W.
in
Age Factors
,
Aging
,
Databases, Factual
2020
As people live longer, ages at death are becoming more similar. This dual advance over the last two centuries, a central aim of public health policies, is a major achievement of modern civilization. Some recent exceptions to the joint rise of life expectancy and life span equality, however, make it difficult to determine the underlying causes of this relationship. Here, we develop a unifying framework to study life expectancy and life span equality over time, relying on concepts about the pace and shape of aging. We study the dynamic relationship between life expectancy and life span equality with reliable data from the Human Mortality Database for 49 countries and regions with emphasis on the long time series from Sweden. Our results demonstrate that both changes in life expectancy and life span equality are weighted totals of rates of progress in reducing mortality. This finding holds for three different measures of the variability of life spans. The weights evolve over time and indicate the ages at which reductions in mortality increase life expectancy and life span equality: the more progress at the youngest ages, the tighter the relationship. The link between life expectancy and life span equality is especially strong when life expectancy is less than 70 y. In recent decades, life expectancy and life span equality have occasionally moved in opposite directions due to larger improvements in mortality at older ages or a slowdown in declines in midlife mortality. Saving lives at ages below life expectancy is the key to increasing both life expectancy and life span equality.
Journal Article
Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity
2021
The average life expectancy of the world population has increased remarkably in the past 150 years and it is still increasing. A long life is a dream of humans since the beginning of time but also a dream is to live it in good physical and mental condition. Nutrition research has focused on recent decades more on food combination patterns than on individual foods/nutrients due to the possible synergistic/antagonistic effects of the components in a dietary model. Various dietary patterns have been associated with health benefits, but the largest body of evidence in the literature is attributable to the traditional dietary habits and lifestyle followed by populations from the Mediterranean region. After the Seven Countries Study, many prospective observational studies and trials in diverse populations reinforced the beneficial effects associated with a higher adherence to the Mediterranean diet in reference to the prevention/management of age-associated non-communicable diseases, such as cardiovascular and metabolic diseases, neurodegenerative diseases, cancer, depression, respiratory diseases, and fragility fractures. In addition, the Mediterranean diet is ecologically sustainable. Therefore, this immaterial world heritage constitutes a healthy way of eating and living respecting the environment.
Journal Article
Age-Related Variation in Health Status after Age 60
by
Marengoni, Alessandra
,
Mangialasche, Francesca
,
Angleman, Sara
in
Activities of Daily Living
,
Adults
,
Aged
2015
Disability, functionality, and morbidity are often used to describe the health of the elderly. Although particularly important when planning health and social services, knowledge about their distribution and aggregation at different ages is limited. We aim to characterize the variation of health status in a 60+ old population using five indicators of health separately and in combination.
3080 adults 60+ living in Sweden between 2001 and 2004 and participating at the SNAC-K population-based cohort study. Health indicators: number of chronic diseases, gait speed, Mini Mental State Examination (MMSE), disability in instrumental-activities of daily living (I-ADL), and in personal-ADL (P-ADL).
Probability of multimorbidity and probability of slow gait speed were already above 60% and 20% among sexagenarians. Median MMSE and median I-ADL showed good performance range until age 84; median P-ADL was close to zero up to age 90. Thirty% of sexagenarians and 11% of septuagenarians had no morbidity and no impairment, 92% and 80% of them had no disability. Twenty-eight% of octogenarians had multimorbidity but only 27% had some I-ADL disability. Among nonagenarians, 13% had severe disability and impaired functioning while 12% had multimorbidity and slow gait speed.
Age 80-85 is a transitional period when major health changes take place. Until age 80, most people do not have functional impairment or disability, despite the presence of chronic disorders. Disability becomes common only after age 90. This implies an increasing need of medical care after age 70, whereas social care, including institutionalization, becomes a necessity only in nonagenarians.
Journal Article
Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides
2017
Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30%
w
/
w
) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.
Journal Article