Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,667
result(s) for
"Allergenicity"
Sort by:
Influence of the Carbohydrate Moieties on the Immunoreactivity and Digestibility of the Egg Allergen Ovomucoid: e80810
2013
Background Ovomucoid (OM) has two carbohydrate chains on each of the first and second domains and one in the third. The contribution of the covalently bound carbohydrate chains to the overall OM allergenicity is controversial. Another aspect directly related with the immunological properties of OM that has not been studied in depth is the importance of the carbohydrate chains on its digestibility. Objective The aim of the study was to assess the involvement of the carbohydrate moieties of OM in its digestibility and allergenic properties. Methods IgE-binding and basophil activation by glycosylated and enzymatically deglycosylated OM (dOM) were compared using blood from egg-allergic patients. The peptides obtained after digestion using a physiologically relevant model were identified by RP-HPLC-MS/MS and the IgE-binding of the resulting fragments was evaluated by DOT-Blot. Results No structural changes were observed after deglycosylation of OM. 80% of the patients showed lower IgE binding to dOM as compared with OM and, in some patients, IgE reactivity could not be inhibited by pre-incubation with dOM. A subtle reduction in the percentage of activated basophils was observed when incubated with dOM as compared to OM. Following simulated digestion, dOM was more extensively degraded than OM, particularly during the gastric phase and both, OM and dOM, yielded, after the duodenal phase, immunoreactive fragments that were totally or partially coincident with previously described epitopes. Conclusion & Clinical Relevance: this work demonstrated an enhanced IgE reactivity towards carbohydrate containing OM in some egg-allergic patients that could be attributed to cross-sensitization or sensitization to the glycosylated components. The carbohydrate chains contributed to an increased resistance to proteolysis, and thus, to its allergenic potency. Evaluation of the products of digestion of OM and dOM revealed the presence of high-frequency IgE-binding epitopes that could remain linked by disulphide bonds.
Journal Article
Guidance on allergenicity assessment of genetically modified plants
by
van Loveren, Henk
,
Guerche, Philippe
,
Birch, Andrew Nicholas
in
Allergenicity
,
allergenicity assessment
,
Allergens
2017
This document provides supplementary guidance on specific topics for the allergenicity risk assessment of genetically modified plants. In particular, it supplements general recommendations outlined in previous EFSA GMO Panel guidelines and Implementing Regulation (EU) No 503/2013. The topics addressed are non-IgE-mediated adverse immune reactions to foods, in vitro protein digestibility tests and endogenous allergenicity. New scientific and regulatory developments regarding these three topics are described in this document. Considerations on the practical implementation of those developments in the risk assessment of genetically modified plants are discussed and recommended, where appropriate.
Journal Article
Risk profile related to production and consumption of insects as food and feed
2015
The present opinion has the format of a risk profile and presents potential biological and chemical hazards as well as allergenicity and environmental hazards associated with farmed insects used as food and feed taking into account of the entire chain, from farming to the final product. The opinion also addresses the occurrence of these hazards in non‐processed insects, grown on different substrate categories, in comparison to the occurrence of these hazards in other non‐processed sources of protein of animal origin. When currently allowed feed materials are used as substrate to feed insects, the possible occurrence of microbiological hazards is expected to be comparable to their occurrence in other non‐processed sources of protein of animal origin. The possible occurrence of prions in non‐processed insects will depend on whether the substrate includes protein of human or ruminant origin. Data on transfer of chemical contaminants from different substrates to the insects are very limited. Substrates like kitchen waste, human and animal manure are also considered and hazards from insects fed on these substrates need to be specifically assessed. It is concluded that for both biological and chemical hazards, the specific production methods, the substrate used, the stage of harvest, the insect species and developmental stage, as well as the methods for further processing will all have an impact on the occurrence and levels of biological and chemical contaminants in food and feed products derived from insects. Hazards related to the environment are expected to be comparable to other animal production systems. The opinion also identifies the uncertainties (lack of knowledge) related to possible hazards when insects are used as food and feed and notes that there are no systematically collected data on animal and human consumption of insects. Studies on the occurrence of microbial pathogens of vertebrates as well as published data on hazardous chemicals in reared insects are scarce. Further data generation on these issues are highly recommended.
Journal Article
Allergenicity Assessment of Novel Food Proteins: What Should Be Improved?
by
Moreno, F. Javier
,
Mills, E.N. Clare
,
Koning, Frits
in
Allergenicity
,
allergenicity assessment
,
Allergens
2021
Allergenicity prediction is one of the most challenging aspects in the safety assessment of foods derived from either biotechnology or novel food proteins. Here we present a bottom-up strategy that defines a priori the specific risk assessment (RA) needs based on a database appropriately built for such purposes.
Journal Article
Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins
by
Van Neerven, Joost
,
Teodorowicz, Malgorzata
,
Savelkoul, Huub
in
Advanced glycation end products (AGEs)
,
allergenicity
,
Allergenicity of AGEs
2017
The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.
Journal Article
Scientific Guidance for the submission of dossiers on Food Enzymes
by
Andryszkiewicz, Magdalena
,
Crebelli, Riccardo
,
Kovalkovicova, Natalia
in
Allergenicity
,
applications
,
Enzymes
2021
Following a request from the European Commission, EFSA developed an updated scientific guidance to assist applicants in the preparation of applications for food enzymes. This guidance describes the scientific data to be included in applications for the authorisation of food enzymes, as well as for the extension of use for existing authorisations, in accordance with Regulation (EC) No 1331/2008 and its implementing rules. Information to be provided in applications relates to source, production and characteristics of the food enzyme, toxicological data, allergenicity and dietary exposure estimation. Source, production and characteristics of the food enzyme are first considered only for enzymes of microbial origin and subsequently for those enzymes derived from plants and for enzymes from animal sources. Finally, the data requested for toxicology, allergenicity and dietary exposure applies to all food enzymes independent of the source. On the basis of the submitted data, EFSA will assess the safety of food enzymes and conclude whether or not they present a risk to human health under the proposed conditions of use. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2021.EN-6850/full
Journal Article
Estimation of the Allergenic Potential of Urban Trees and Urban Parks: Towards the Healthy Design of Urban Green Spaces of the Future
by
Gonçalves, Paula
,
Vilhar, Ursa
,
Andreucci, Maria Beatrice
in
Allergens - analysis
,
Allergies
,
Cities
2019
The impact of allergens emitted by urban green spaces on health is one of the main disservices of ecosystems. The objective of this work is to establish the potential allergenic value of some tree species in urban environments, so that the allergenicity of green spaces can be estimated through application of the Index of Urban Green Zones Allergenicity (IUGZA). Multiple types of green spaces in Mediterranean cities were selected for the estimation of IUGZ. The results show that some of the ornamental species native to the Mediterranean are among the main causative agents of allergy in the population; in particular, Oleaceae, Cupressaceae, Fagaceae, and Platanus hispanica. Variables of the strongest impact on IUGZA were the bioclimatic characteristics of the territory and design aspects, such as the density of trees and the number of species. We concluded that the methodology to assess the allergenicity associated with urban trees and urban areas presented in this work opens new perspectives in the design and planning of urban green spaces, pointing out the need to consider the potential allergenicity of a species when selecting plant material to be used in cities. Only then can urban green areas be inclusive spaces, in terms of public health.
Journal Article
Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens?
by
Lupi, Roberta
,
Bavaro, Simona Lucia
,
Mazzucchelli, Gabriel
in
Allergenicity
,
Allergens
,
Animal models
2022
This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
Journal Article
Genetically modified crops: current status and future prospects
by
Kumar, Krishan
,
Rakshit, Sujay
,
Gambhir, Geetika
in
abiotic stress
,
Agriculture
,
Allergenicity
2020
Main conclusion
While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits.
Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO
2
emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.
Journal Article
Scientific Opinion on development needs for the allergenicity and protein safety assessment of food and feed products derived from biotechnology
by
Guerche, Philippe
,
Veronesi, Fabio
,
Fernandez Dumont, Antonio
in
Allergenicity
,
Allergenicity assessment
,
Allergens
2022
This Scientific Opinion addresses the formulation of specific development needs, including research requirements for allergenicity assessment and protein safety, in general, which is urgently needed in a world that demands more sustainable food systems. Current allergenicity risk assessment strategies are based on the principles and guidelines of the Codex Alimentarius for the safety assessment of foods derived from ‘modern’ biotechnology initially published in 2003. The core approach for the safety assessment is based on a ‘weight‐of‐evidence’ approach because no single piece of information or experimental method provides sufficient evidence to predict allergenicity. Although the Codex Alimentarius and EFSA guidance documents successfully addressed allergenicity assessments of single/stacked event GM applications, experience gained and new developments in the field call for a modernisation of some key elements of the risk assessment. These should include the consideration of clinical relevance, route of exposure and potential threshold values of food allergens, the update of in silico tools used with more targeted databases and better integration and standardisation of test materials and in vitro/in vivo protocols. Furthermore, more complex future products will likely challenge the overall practical implementation of current guidelines, which were mainly targeted to assess a few newly expressed proteins. Therefore, it is timely to review and clarify the main purpose of the allergenicity risk assessment and the vital role it plays in protecting consumers' health. A roadmap to (re)define the allergenicity safety objectives and risk assessment needs will be required to inform a series of key questions for risk assessors and risk managers such as ‘what is the purpose of the allergenicity risk assessment?’ or ‘what level of confidence is necessary for the predictions?’.
Journal Article