Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42,768
result(s) for
"Alzheimer Disease - metabolism"
Sort by:
A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease
by
Mendez, Patricio Chrem
,
Martins, Ralph N.
,
Berman, Sarah B.
in
631/378/2612
,
692/53/2421
,
692/617
2020
Development of tau-based therapies for Alzheimer’s disease requires an understanding of the timing of disease-related changes in tau. We quantified the phosphorylation state at multiple sites of the tau protein in cerebrospinal fluid markers across four decades of disease progression in dominantly inherited Alzheimer’s disease. We identified a pattern of tau staging where site-specific phosphorylation changes occur at different periods of disease progression and follow distinct trajectories over time. These tau phosphorylation state changes are uniquely associated with structural, metabolic, neurodegenerative and clinical markers of disease, and some (p-tau217 and p-tau181) begin with the initial increases in aggregate amyloid-β as early as two decades before the development of aggregated tau pathology. Others (p-tau205 and t-tau) increase with atrophy and hypometabolism closer to symptom onset. These findings provide insights into the pathways linking tau, amyloid-β and neurodegeneration, and may facilitate clinical trials of tau-based treatments.
Site-specific hyperphosphorylations of tau in the cerebrospinal fluid change with disease course, and correlate with pathology and cognitive decline in dominantly inherited Alzheimer’s disease.
Journal Article
Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease
2021
Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer’s disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18–94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology.
Alzheimer’s disease has been associated with increased structural brain aging. Here the authors describe a model that predicts brain aging from resting state functional connectivity data, and demonstrate this is accelerated in individuals with pre-clinical familial Alzheimer’s disease.
Journal Article
Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort
2023
Women carry a higher burden of Alzheimer’s disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler’s logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact.
Journal Article
Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders
by
Budde, John P.
,
Fernandez, Maria Victoria
,
Bahena, Jorge A.
in
631/378/2583
,
692/53/2423
,
692/699/375/132/1283
2021
Understanding the tissue-specific genetic controls of protein levels is essential to uncover mechanisms of post-transcriptional gene regulation. In this study, we generated a genomic atlas of protein levels in three tissues relevant to neurological disorders (brain, cerebrospinal fluid and plasma) by profiling thousands of proteins from participants with and without Alzheimer’s disease. We identified 274, 127 and 32 protein quantitative trait loci (pQTLs) for cerebrospinal fluid, plasma and brain, respectively. cis-pQTLs were more likely to be tissue shared, but trans-pQTLs tended to be tissue specific. Between 48.0% and 76.6% of pQTLs did not co-localize with expression, splicing, DNA methylation or histone acetylation QTLs. Using Mendelian randomization, we nominated proteins implicated in neurological diseases, including Alzheimer’s disease, Parkinson’s disease and stroke. This first multi-tissue study will be instrumental to map signals from genome-wide association studies onto functional genes, to discover pathways and to identify drug targets for neurological diseases.
Yang et al. generated a genomic atlas of protein levels in brain, cerebrospinal fluid and plasma and used human genetics approaches to identify proteins implicated in neurological diseases as well as druggable targets.
Journal Article
Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis
2021
Genome-wide association studies (GWAS) have identified many risk loci for Alzheimer’s disease (AD)
1
,
2
, but how these loci confer AD risk is unclear. Here, we aimed to identify loci that confer AD risk through their effects on brain protein abundance to provide new insights into AD pathogenesis. To that end, we integrated AD GWAS results with human brain proteomes to perform a proteome-wide association study (PWAS) of AD, followed by Mendelian randomization and colocalization analysis. We identified 11 genes that are consistent with being causal in AD, acting via their
cis
-regulated brain protein abundance. Nine replicated in a confirmation PWAS and eight represent new AD risk genes not identified before by AD GWAS. Furthermore, we demonstrated that our results were independent of
APOE e4
. Together, our findings provide new insights into AD pathogenesis and promising targets for further mechanistic and therapeutic studies.
Integrating human brain proteomes with genome-wide association data followed by Mendelian randomization identifies 11 genes with potentially causal roles in Alzheimer’s disease pathogenesis.
Journal Article
Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study)
by
Knight, Lucy
,
Karim, Salman
,
Junaid, Kehinde
in
Activities of Daily Living
,
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
2019
Background
Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue currently approved for type 2 diabetes and obesity. Preclinical evidence in transgenic models of Alzheimer’s disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells. The primary objective of the study is to evaluate the change in cerebral glucose metabolic rate after 12 months of treatment with liraglutide in participants with Alzheimer’s disease compared to those who are receiving placebo.
Methods/design
ELAD is a 12-month, multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild Alzheimer’s dementia. A total of 206 participants will be randomised to receive either liraglutide or placebo as a daily injection for a year. The primary outcome will be the change in cerebral glucose metabolic rate in the cortical regions (hippocampus, medial temporal lobe, and posterior cingulate) from baseline to follow-up in the treatment group compared with the placebo group. The key secondary outcomes are the change from baseline to 12 months in
z
scores for clinical and cognitive measures (Alzheimer’s Disease Assessment Scale—Cognitive Subscale and Executive domain scores of the Neuropsychological Test Battery, Clinical Dementia Rating Sum of Boxes, and Alzheimer’s Disease Cooperative Study—Activities of Daily Living) and the incidence and severity of treatment-emergent adverse events or clinically important changes in safety assessments. Other secondary outcomes are 12-month change in magnetic resonance imaging volume, diffusion tensor imaging parameters, reduction in microglial activation in a subgroup of participants, reduction in tau formation and change in amyloid levels in a subgroup of participants measured by tau and amyloid imaging, and changes in composite scores using support machine vector analysis in the treatment group compared with the placebo group.
Discussion
Alzheimer’s disease is a leading cause of morbidity worldwide. As available treatments are only symptomatic, the search for disease-modifying therapies is a priority. If the ELAD trial is successful, liraglutide and GLP-1 analogues will represent an important class of compounds to be further evaluated in clinical trials for Alzheimer’s treatment.
Trial registration
ClinicalTrials.gov,
NCT01843075
. Registration 30 April 2013.
Journal Article
Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial
2021
Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer's-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging.
This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control.
Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects.
NCT02000583; ClinicalTrials.gov.
Journal Article
PART is part of Alzheimer disease
by
Tolnay, Markus
,
Brion, Jean-Pierre
,
Braak, Heiko
in
Aging
,
Aging - pathology
,
Alzheimer Disease - diagnosis
2015
It has been proposed that tau aggregation confined to entorhinal cortex and hippocampus, with no or only minimal Aβ deposition, should be considered as a ‘primary age-related tauopathy’ (PART) that is not integral to the
continuum
of sporadic Alzheimer disease (AD). Here, we examine the evidence that PART has a pathogenic mechanism and a prognosis which differ from those of AD. We contend that no specific property of the entorhinal–hippocampal tau pathology makes it possible to predict either a limited progression or the development of AD, and that biochemical differences await an evidence base. On the other hand, entorhinal–hippocampal tau pathology is an invariant feature of AD and is always associated with its development. Rather than creating a separate disease entity, we recommend the continued use of an analytical approach based on NFT stages and Aβ phases with no inference about hypothetical disease processes.
Journal Article
Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials
by
Lobello, Kasia
,
Luscan, Gerald
,
Brashear, H. Robert
in
Aged
,
Alzheimer Disease - diagnostic imaging
,
Alzheimer Disease - drug therapy
2016
Background
Our objective was to evaluate the efficacy (clinical and biomarker) and safety of intravenous bapineuzumab in patients with mild to moderate Alzheimer’s disease (AD).
Methods
Two of four phase 3, multicenter, randomized, double-blind, placebo-controlled, 18-month trials were conducted globally: one in apolipoprotein E ε4 carriers and another in noncarriers. Patients received bapineuzumab 0.5 mg/kg (both trials) or 1.0 mg/kg (noncarrier trial) or placebo every 13 weeks. Coprimary endpoints were change from baseline to week 78 on the 11-item Alzheimer’s Disease Assessment Scale–Cognitive subscale and the Disability Assessment for Dementia.
Results
A total of 683 and 329 patients completed the current carrier and noncarrier trials, respectively, which were terminated prematurely owing to lack of efficacy in the two other phase 3 trials of bapineuzumab in AD. The current trials showed no significant difference between bapineuzumab and placebo for the coprimary endpoints and no effect of bapineuzumab on amyloid load or cerebrospinal fluid phosphorylated tau. (Both measures were stable over time in the placebo group.) Amyloid-related imaging abnormalities with edema or effusion were confirmed as the most notable adverse event.
Conclusions
These phase 3 global trials confirmed lack of efficacy of bapineuzumab at tested doses on clinical endpoints in patients with mild to moderate AD. Some differences in the biomarker results were seen compared with the other phase 3 bapineuzumab trials. No unexpected adverse events were observed.
Trial registration
Noncarriers (3000) ClinicalTrials.gov identifier
NCT00667810
; registered 24 Apr 2008.
Carriers (3001) ClinicalTrials.gov identifier
NCT00676143
; registered 2 May 2008.
Journal Article
Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective multicenter study
by
Reiman, E M
,
Sabbagh, M N
,
Fleisher, A S
in
631/378/2649
,
692/699/375/132/1283
,
692/700/1421/1846/2092
2014
This study was designed to evaluate whether subjects with amyloid beta (Aβ) pathology, detected using florbetapir positron emission tomorgraphy (PET), demonstrated greater cognitive decline than subjects without Aβ pathology. Sixty-nine cognitively normal (CN) controls, 52 with recently diagnosed mild cognitive impairment (MCI) and 31 with probable Alzheimer’s disease (AD) dementia were included in the study. PET images obtained in these subjects were visually rated as positive (Aβ+) or negative (Aβ−), blind to diagnosis. Fourteen percent (10/69) of CN, 37% (19/52) of MCI and 68% (21/31) of AD were Aβ+. The primary outcome was change in ADAS-Cog score in MCI subjects after 36 months; however, additional outcomes included change on measures of cognition, function and diagnostic status. Aβ+ MCI subjects demonstrated greater worsening compared with Aβ− subjects on the ADAS-Cog over 36 months (5.66±1.47 vs −0.71±1.09,
P
=0.0014) as well as on the mini-mental state exam (MMSE), digit symbol substitution (DSS) test, and a verbal fluency test (
P
<0.05). Similar to MCI subjects, Aβ+ CN subjects showed greater decline on the ADAS-Cog, digit-symbol-substitution test and verbal fluency (
P
<0.05), whereas Aβ+ AD patients showed greater declines in verbal fluency and the MMSE (
P
<0.05). Aβ+ subjects in all diagnostic groups also showed greater decline on the CDR-SB (
P
<0.04), a global clinical assessment. Aβ+ subjects did not show significantly greater declines on the ADCS-ADL or Wechsler Memory Scale. Overall, these findings suggest that in CN, MCI and AD subjects, florbetapir PET Aβ+ subjects show greater cognitive and global deterioration over a 3-year follow-up than Aβ− subjects do.
Journal Article