Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
77,719
result(s) for
"Animal Feed"
Sort by:
Smallholder farmers’ knowledge and willingness to pay for insect-based feeds in Kenya
by
Diiro, Gracious M.
,
Kassie, Menale
,
van Loon, Joop J. A.
in
Acceptance tests
,
Agricultural policy
,
Agriculture
2020
Edible insects are increasingly being considered as sustainable alternatives to fish and soybean meals in animal feed because of their high nutritional quality and environmental benefits. However, successful introduction of a new product to the market depends on the target user's acceptance. Thus, evaluating the potential demand of insect-based feeds would provide relevant information for policy development. The present study assessed farmers' knowledge on edible insects as feed, their acceptance of integrating insect meals in animal feeds and willingness to pay (WTP) for insect-based feed (IBF) using a contingent valuation method. A household survey was conducted among 957 randomly selected farmers including: 409 poultry, 241 fish and 307 pig farmers in four counties in Kenya. Results of the study reveal that over 70 and 80% of poultry and fish farmers, respectively, are aware that insects can be used as a feed ingredient. In addition, over 60 and 75% of poultry and fish farmers, respectively, consider insects as a good component of feed. Poultry, pig and fish farmers interviewed accepted and showed willingness to pay for IBF. Regression analysis indicated that age, gender, education, marital status, distance to feed trader, awareness of insects as feed, attitude towards insects, acceptance of insect species, availability of agricultural inputs, use of commercial feeds, availability of training and market information had a significant influence on the WTP for IBF. Therefore, increased extension services to educate famers on the nutritional benefits of insect meals in animal feeds and existing market opportunities are expected to improve farmers' attitude towards utilization and consequently enhance WTP for IBF, which in return would significantly reduce the existing pressure on conventional fishmeal feed resources. Our findings provide the first insights into the market opportunities of including insect meals in the animal feed value chain in Kenya.
Journal Article
Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods
by
Fernandes, José O.
,
C. Cunha, Sara
,
Santos Pereira, Carolina
in
Aflatoxins
,
Agricultural commodities
,
analytical methods
2019
Today, we have been witnessing a steady tendency in the increase of global demand for maize, wheat, soybeans, and their products due to the steady growth and strengthening of the livestock industry. Thus, animal feed safety has gradually become more important, with mycotoxins representing one of the most significant hazards. Mycotoxins comprise different classes of secondary metabolites of molds. With regard to animal feed, aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent ones. In this review, several constraints posed by these contaminants at economical and commercial levels will be discussed, along with the legislation established in the European Union to restrict mycotoxins levels in animal feed. In addition, the occurrence of legislated mycotoxins in raw materials and their by-products for the feeds of interest, as well as in the feeds, will be reviewed. Finally, an overview of the different sample pretreatment and detection techniques reported for mycotoxin analysis will be presented, the main weaknesses of current methods will be highlighted.
Journal Article
Toxicology of deoxynivalenol and its acetylated and modified forms
by
Biomin Research Center
,
Loiseau, Nicolas
,
Biosynthèse & Toxicité des Mycotoxines (ToxAlim-BioToMyc) ; ToxAlim (ToxAlim) ; Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de To
in
Acetylation
,
Animal biology
,
Animal Feed - adverse effects
2016
Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represent an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the \"native\" mycotoxin. The main derivates of DON are the acetylated forms produced by the fungi (3-and 15acetyl-DON), the biologically \"modified\" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemical \"modified\" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effect varied according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.
Journal Article
Global Mycotoxin Occurrence in Feed: A Ten-Year Survey
by
Jenkins, Timothy
,
Gruber-Dorninger, Christiane
,
Schatzmayr, Gerd
in
Aflatoxin B1
,
Aflatoxins
,
Africa
2019
Mycotoxins contaminating animal feed can exert toxic effects in animals and be transferred into animal products. Therefore, mycotoxin occurrence in feed should be monitored. To this end, we performed a large-scale global survey of mycotoxin contamination in feed and assessed regional differences and year-to-year variation of mycotoxin occurrence. Concentrations of aflatoxin B1, zearalenone, fumonisins, ochratoxin A, deoxynivalenol, and T-2 toxin were analyzed in 74,821 samples of feed and feed raw materials (e.g., maize, wheat, soybean) collected from 100 countries from 2008 to 2017. In total, 88% of the samples were contaminated with at least one mycotoxin. Mycotoxin occurrence showed distinct regional trends and climate was a key determinant governing these trends. In most regions, the majority of samples complied with maximum levels and guidance values for mycotoxins in animal feed that are in effect in the European Union. However, 41.1%, 38.5%, and 20.9% of samples from South Asia, Sub-Saharan Africa, and Southeast Asia, respectively, exceeded the maximum level for aflatoxin B1 (20 µg/kg). In several regions, mycotoxin concentrations in maize showed a pronounced year-to-year variation that could be explained by rainfall or temperature during sensitive periods of grain development. A large fraction of samples (64%) was co-contaminated with ≥ 2 mycotoxins. Most frequently observed mycotoxin mixtures were combinations of deoxynivalenol, zearalenone, and fumonisins, as well as fumonisins and aflatoxin B1. Deoxynivalenol and zearalenone concentrations were correlated in maize and wheat. In conclusion, according to an extensive global survey, mycotoxin (co-)contamination of animal feed is common, shows regional trends, and is governed in part by climate and weather.
Journal Article
Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth
2018
Glycine, proline, and hydroxyproline (Hyp) contribute to 57% of total amino acids (AAs) in collagen, which accounts for one-third of proteins in animals. As the most abundant protein in the body, collagen is essential to maintain the normal structure and strength of connective tissue, such as bones, skin, cartilage, and blood vessels. Mammals, birds, and fish can synthesize: (1) glycine from threonine, serine, choline, and Hyp; (2) proline from arginine; and (3) Hyp from proline residues in collagen, in a cell- and tissue-specific manner. In addition, livestock (e.g., pigs, cattle, and sheep) produces proline from glutamine and glutamate in the small intestine, but this pathway is absent from birds and possibly most fish species. Results of the recent studies indicate that endogenous synthesis of glycine, proline, and Hyp is inadequate for maximal growth, collagen production, or feed efficiency in pigs, chickens, and fish. Although glycine, proline and Hyp, and gelatin can be used as feed additives in animal diets, these ingredients except for glycine are relatively expensive, which precludes their inclusion in practical rations. Alternatively, hydrolyzed feather meal (HFM), which contains 9% glycine, 5% Hyp, and 12% proline, holds great promise as a low cost but abundant dietary source of glycine, Hyp, and proline for ruminants and nonruminants. Because HFM is deficient in most AAs, future research efforts should be directed at improving the bioavailability of its AAs and the balance of AAs in HFM-supplemented diets. Finally, HFM may be used as a feed additive to prevent or ameliorate connective tissue disorders in domestic and aquatic animals.
Journal Article
Survival of viral pathogens in animal feed ingredients under transboundary shipping models
by
Patterson, Gilbert
,
de Lima, Marcelo
,
Dee, Scott
in
African swine fever
,
Animal feed
,
Animal Feed - analysis
2018
The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients (“high-risk combinations”) under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.
Journal Article
Comparative terrestrial feed and land use of an aquaculture-dominant world
by
Froehlich, Halley E.
,
Halpern, Benjamin S.
,
Runge, Claire A.
in
Animal Feed - analysis
,
Animals
,
Anthropogenic factors
2018
Reducing food production pressures on the environment while feeding an ever-growing human population is one of the grand challenges facing humanity. The magnitude of environmental impacts from food production, largely around land use, has motivated evaluation of the environmental and health benefits of shifting diets, typically away from meat toward other sources, including seafood. However, total global catch of wild seafood has remained relatively unchanged for the last two decades, suggesting increased demand for seafood will mostly have to rely on aquaculture (i.e., aquatic farming). Increasingly, cultivated aquatic species depend on feed inputs from agricultural sources, raising concerns around further straining crops and land use for feed. However, the relative impact and potential of aquaculture remains unclear. Here we simulate how different forms of aquaculture contribute and compare with feed and land use of terrestrial meat production and how spatial patterns might change by midcentury if diets move toward more cultured seafood and less meat. Using country-level aquatic and terrestrial data, we show that aquaculture requires less feed crops and land, even if over one-third of protein production comes from aquaculture by 2050. However, feed and land-sparing benefits are spatially heterogeneous, driven by differing patterns of production, trade, and feed composition. Ultimately, our study highlights the future potential and uncertainties of considering aquaculture in the portfolio of sustainability solutions around one of the largest anthropogenic impacts on the planet.
Journal Article
Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches
by
Fumagalli, Francesca
,
Cheli, Federica
,
Ottoboni, Matteo
in
Animal feed
,
Animal Feed - analysis
,
Animal Feed - microbiology
2021
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Journal Article
Rapid detection of three mycotoxins in animal feed materials using competitive ELISA-based origami microfluidic paper analytical device (μPAD)
by
Feng, Shaolong
,
Hua, Marti Z.
,
Roopesh, M. S.
in
ABC Highlights: authored by Rising Stars and Top Experts
,
absorption
,
Analysis
2023
We report the development of a competitive ELISA-based origami microfluidic paper-based analytical device (μPAD) for the detection of mycotoxins in animal feed material. The μPAD was patterned using the wax printing technique with the design of a testing pad in the middle and two absorption pads at the side. Anti-mycotoxin antibodies were effectively immobilized on chitosan–glutaraldehyde-modified sample reservoirs in the μPAD. The determination of zearalenone, deoxynivalenol, and T-2 toxin in corn flour was successfully achieved by performing competitive ELISA on the μPAD in 20 min. Colorimetric results were easily distinguished by the naked eye with a detection limit of 1 µg/mL for all three mycotoxins. The μPAD integrated with competitive ELISA holds potential for practical applications in the livestock industry for rapid, sensitive, and cost-effective detection of different mycotoxins in animal feed materials.
Graphical abstract
Journal Article
Peanut Skins as a Natural Antimicrobial Feed Additive To Reduce the Transmission of Salmonella in Poultry Meat Produced for Human Consumption
by
Nasaruddin, Anis Izzaty
,
Hussin, Anis Shobirin Meor
,
Toomer, Ondulla T.
in
Alternative feed ingredients
,
Animal Feed - analysis
,
Animals
2022
Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.
•Salmonella Enteritidis predominates within poultry production.•PS waste may be an effective feed additive to mitigate the proliferation of SE.•Dietary supplementation with PS reduced SE in fecal and litter samples (P ≤ 0.1).•PS may have potential application as an antimicrobial feed additive.
Journal Article