Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
68,263 result(s) for "Antibacterial"
Sort by:
Antibacterial Coatings: Challenges, Perspectives, and Opportunities
Antibacterial coatings are rapidly emerging as a primary component of the global mitigation strategy of bacterial pathogens. Thanks to recent concurrent advances in materials science and biotechnology methodologies, and a growing understanding of environmental microbiology, an extensive variety of options are now available to design surfaces with antibacterial properties. However, progress towards a more widespread use in clinical settings crucially depends on addressing the key outstanding issues. We review release-based antibacterial coatings and focus on the challenges and opportunities presented by the latest generation of these materials. In particular, we highlight recent approaches aimed at controlling the release of antibacterial agents, imparting multi-functionality, and enhancing long-term stability. Coatings releasing antibacterial agents have shown great potential to reduce nosocomial infections. The development of controlled release strategies is necessary to optimize therapeutic effects. Next-generation coatings should be multifunctional and integrate multiple antibacterial effects. Standardized assessment of both stability and antibacterial properties still need to be addressed, especially for long-term applications.
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials
HighlightsFabrication, characterizations and photothermal properties of MXenes are systematically described.Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed.Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated.The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes.
Machine Learning in Antibacterial Drug Design
Advances in computer hardware and the availability of high-performance supercomputing platforms and parallel computing, along with artificial intelligence methods are successfully complementing traditional approaches in medicinal chemistry. In particular, machine learning is gaining importance with the growth of the available data collections. One of the critical areas where this methodology can be successfully applied is in the development of new antibacterial agents. The latter is essential because of the high attrition rates in new drug discovery, both in industry and in academic research programs. Scientific involvement in this area is even more urgent as antibacterial drug resistance becomes a public health concern worldwide and pushes us increasingly into the post-antibiotic era. In this review, we focus on the latest machine learning approaches used in the discovery of new antibacterial agents and targets, covering both small molecules and antibacterial peptides. For the benefit of the reader, we summarize all applied machine learning approaches and available databases useful for the design of new antibacterial agents and address the current shortcomings.
Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms
Nowadays, the influence of nanoparticles (NPs) on microorganisms attracts a great deal of attention as an alternative to antibiotics. Iron oxide (Fe 3 O 4 ) NPs’ effects on Gram-negative Escherichia coli BW 25113 and Gram-positive Enterococcus hirae ATCC 9790 growth and membrane-associated mechanisms have been investigated in this study. Growth specific rate of E. coli was decreased, indicating the bactericidal effect of Fe 3 O 4 NPs. This inhibitory effect of NPs had a concentration-dependent manner. The reactive oxygen species together with superoxide radicals and singlet oxygen formed by Fe 3 O 4 NPs could be the inhibition cause. Fe 3 O 4 NPs showed opposite effects on E. hirae : the growth stimulation or inhibition was observed depending on NPs concentration used. Addition of NPs altered redox potential kinetics and inhibited H 2 yield in E. coli ; no change in intracellular pH was determined. Fe 3 O 4 NPs decreased H + -fluxes through bacterial membrane more in E. coli than in E. hirae even in the presence of DCCD and increased ATPase activity more in E. hirae than in E. coli . Our results showed that the Fe 3 O 4 NPs demonstrate differentiating effects on Gram-negative and Gram-positive bacteria likely due to the differences in bacterial cell wall structure and metabolic peculiarities. Fe 3 O 4 NPs of different concentrations have no hemolytic (cytotoxic) activity against erythrocytes. Therefore, they can be proposed as antibacterial agents in biomedicine, biotechnology, and pharmaceutics.
New emerging materials with potential antibacterial activities
The increasing prevalence of multidrug-resistant pathogens is a critical public health issue, necessitating the development of alternative antibacterial agents. Examples of these pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and the emergence of “pan-resistant” Gram-negative strains, such as Pseudomonas aeruginosa and Acinetobacter baumannii , which occurred more recently. This review examines various emerging materials with significant antibacterial activities. Among these are nanomaterials such as quantum dots, carbon quantum dots, metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and layered double hydroxides, all of which demonstrate excellent antibacterial properties. Interestingly, including antibacterial agents within the structure of these materials can help avoid bacterial resistance and improve the long-term efficacy of the materials. Additionally, the antibacterial potential of liquid solvents, including ionic liquids and both deep eutectic solvents and natural deep eutectic solvents, is explored. The review discusses the synthesis methods, advantages, and antibacterial efficacy of these new materials. By providing a comprehensive overview of these innovative materials, this review aims to contribute to the ongoing search for effective solutions to combat antibiotic resistance. Key studies demonstrating antibacterial effects against pathogens like Escherichia coli , Staphylococcus aureus , and multidrug-resistant strains are summarized. MOFs have exhibited antibacterial properties through controlled ion release and surface interactions. COFs have enhanced the efficacy of encapsulated antibiotics and displayed intrinsic antibacterial activity. Other nanomaterials, such as quantum dots, have generated reactive oxygen species, leading to microbial inactivation. This review aims to provide insights into these new classes of antibacterial materials and highlight them for addressing the global crisis of antibiotic resistance. Key points • Nanomaterials show strong antibacterial effects against drug-resistant bacteria • Emerging solvents like ionic liquids offer novel solutions for bacterial resistance • MOFs and COFs enhance antibiotic efficacy, showing promise in combating resistance
Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application
The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.
Antibacterial Spirotetronate Polyketides from an IActinomadura/I sp. Strain A30804
Large scale cultivation and chemical investigation of an extract obtained from Actimonadura sp. resulted in the identification of six previously undescribed spirotetronates (pyrrolosporin B and decatromicins C–G; 7–12), along with six known congeners, namely decatromicins A–B (1–2), BE-45722B–D (3–5), and pyrrolosporin A (6). The chemical structures of compounds 1–12 were characterized via comparison with previously reported data and analysis of 1D/2D NMR and MS data. The structures of all new compounds were highly related to the spirotetronate type compounds, decatromicin and pyrrolosporin, with variations in the substituents on the pyrrole and aglycone moieties. All compounds were evaluated for antibacterial activity against the Gram-negative bacteria, Acinetobacter baumannii and Gram-positive bacteria, Staphylococcus aureus and were investigated for their cytotoxicity against the human cancer cell line A549. Of these, decatromicin B (2), BE-45722B (3), and pyrrolosporin B (7) exhibited potent antibacterial activities against both Gram-positive (MIC[sub.90] between 1–3 μM) and Gram-negative bacteria (MIC[sub.90] values ranging from 12–36 μM) with weak or no cytotoxic activity against A549 cells.
Advances in preparation and application of antibacterial hydrogels
Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.