Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
159,765
result(s) for
"Antimicrobial"
Sort by:
Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities
by
Luo, Ying
,
Song, Yuzhu
in
Anti-Bacterial Agents - pharmacology
,
Anti-Infective Agents - pharmacology
,
Anti-Inflammatory Agents - pharmacology
2021
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Journal Article
Insect antimicrobial peptides and their applications
by
Yi, Hui-Yu
,
Chowdhury, Munmun
,
Yu, Xiao-Qiang
in
Animals
,
Antimicrobial agents
,
Antimicrobial Cationic Peptides - chemistry
2014
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Journal Article
Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics
2025
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Journal Article
Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel
by
Marina, Valeriya I.
,
Shulenina, Olga V.
,
Kombarova, Tatiana I.
in
13/21
,
45/77
,
631/326/22/1434
2024
The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides. Here, using genome mining approach, we discovered a family of proline-rich cathelicidins, named rumicidins. The genes encoding these peptides are widespread among ruminant mammals. Biochemical studies indicated that rumicidins effectively inhibited the elongation stage of bacterial translation. The cryo-EM structure of the
Escherichia coli
70S ribosome in complex with one of the representatives of the family revealed that the binding site of rumicidins span the ribosomal A-site cleft and the nascent peptide exit tunnel interacting with its constriction point by the conservative Trp23-Phe24 dyad. Bacterial resistance to rumicidins is mediated by knockout of the SbmA transporter or modification of the MacAB-TolC efflux pump. A wide spectrum of antibacterial activity, a high efficacy in the animal infection model, and lack of adverse effects towards human cells in vitro make rumicidins promising molecular scaffolds for development of ribosome-targeting antibiotics.
The antimicrobial resistance crisis calls for development of new classes of antibiotics. Here, authors use genome mining approach to discover a distinct family of ribosome-targeting proline rich antimicrobial peptides.
Journal Article
Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria
by
Nweze, Emeka Innocent
,
Mba, Ifeanyi Elibe
in
Agriculture
,
Anti-Bacterial Agents - immunology
,
Anti-Bacterial Agents - pharmacology
2022
Microbial resistance to antibiotics is an ancient and dynamic issue that has brought a situation reminiscent of the pre-antibiotic era to the limelight. Currently, antibiotic resistance and the associated infections are widespread and pose significant global health and economic burden. Thus, the misuse of antibiotics, which has increased resistance, has necessitated the search for alternative therapeutic agents for combating resistant pathogens. Antimicrobial peptides (AMPs) hold promise as a viable therapeutic approach against drug-resistant pathogens. AMPs are oligopeptides with low molecular weight. They have broad-spectrum antimicrobial activities against pathogenic microorganisms. AMPs are nonspecific and target components of microbes that facilitate immune response by acting as the first-line defense mechanisms against invading pathogenic microbes. The diversity and potency of AMPs make them good candidates for alternative use. They could be used alone or in combination with several other biomaterials for improved therapeutic activity. They can also be employed in vaccine production targeting drug-resistant pathogens. This review covers the opportunities and advances in AMP discovery and development targeting antimicrobial resistance (AMR) bacteria. Briefly, it presents an overview of the global burden of the antimicrobial resistance crisis, portraying the global magnitude, challenges, and consequences. After that, it critically and comprehensively evaluates the potential roles of AMPs in addressing the AMR crisis, highlighting the major potentials and prospects.
Journal Article
Antimicrobial Peptides towards Clinical Application—A Long History to Be Concluded
by
Cappello, Giovanni
,
Pini, Alessandro
,
Cresti, Laura
in
Animals
,
Antibacterial agents
,
Antibiotics
2024
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Journal Article
Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure
by
Ostrówka, Michał
,
Mackiewicz, Paweł
,
Gagat, Przemysław
in
Amino acids
,
Animals
,
Anti-Bacterial Agents - chemistry
2024
Antimicrobial peptides (AMPs) are emerging as a promising alternative to traditional antibiotics due to their ability to disturb bacterial membranes and/or their intracellular processes, offering a potential solution to the growing problem of antimicrobial resistance. AMP effectiveness is governed by factors such as net charge, hydrophobicity, and the ability to form amphipathic secondary structures. When properly balanced, these characteristics enable AMPs to selectively target bacterial membranes while sparing eukaryotic cells. This review focuses on the roles of positive charge, hydrophobicity, and structure in influencing AMP activity and toxicity, and explores strategies to optimize them for enhanced therapeutic potential. We highlight the delicate balance between these properties and how various modifications, including amino acid substitutions, peptide tagging, or lipid conjugation, can either enhance or impair AMP performance. Notably, an increase in these parameters does not always yield the best results; sometimes, a slight reduction in charge, hydrophobicity, or structural stability improves the overall AMP therapeutic potential. Understanding these complex interactions is key to developing AMPs with greater antimicrobial activity and reduced toxicity, making them viable candidates in the fight against antibiotic-resistant bacteria.
Journal Article
Exploration and Characterization of Antimicrobial Peptides from Shrimp Litopenaeus Vannamei by A Genomic and Transcriptomic Approach
by
Yin, Bin
,
Liao, Xuzheng
,
Shan, Xinxin
in
Antibiotic resistance
,
Antibiotics
,
Antimicrobial activity
2024
Antimicrobial peptides (AMPs) are crucial in the humoral immunity aspect of invertebrates' innate immune systems. However, studies on AMP discovery in the Pacific white shrimp (Litopenaeus vannamei) using omics data have been limited. Addressing the growing concern of antibiotic resistance in aquaculture, this study focused on the identification and characterization of AMPs in L. vannamei using advanced genomic and transcriptomic techniques. The genome of L. vannamei was performed to predict and identify a total of 754 AMP-derived genes, distributed across most chromosomes and spanning 24 distinct AMP families, and further identified 236 AMP-derived genes at the mRNA level in hemocytes. A subset of 20 chemically synthesized peptides, derived from these genes, exhibited significant antimicrobial activity, with over 85% showing effectiveness against key bacterial strains such as Staphylococcus aureus and Vibrio parahaemolyticus. The expression patterns of these AMPs were also investigated in different shrimp tissues and at various infection stages, revealing dynamic responses to pathogenic challenges. These findings highlight the significant potential of AMPs in L. vannamei as novel, effective alternatives to traditional antibiotics in aquaculture, offering insights into their diverse structural properties and biological functions. Together, this comprehensive characterization of the AMP repertoire in L. vannamei demonstrates the efficacy of using omics data for AMP discovery and lays the groundwork for their potential applications.
Journal Article
Current Status of the Application of Antimicrobial Peptides and Their Conjugated Derivatives
by
Andreu, Cecilia
,
del Olmo, Marcel·lí
in
Amino acids
,
Animals
,
Anti-Bacterial Agents - chemistry
2025
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a great deal of research has recently been carried out on antimicrobial peptides (AMPs), which are natural, amphipathic, low-molecular-weight molecules that act by altering the cell surface and/or interfering with cellular activities essential for life. Progress is also being made in developing strategies to enhance the activity of these compounds through their association with other molecules. In addition to identifying AMPs, it is essential to ensure that they maintain their integrity after passing through the digestive tract and exhibit adequate activity against their targets. Significant advances are being made in relation to analyzing various types of conjugates and carrier systems, such as nanoparticles, vesicles, hydrogels, and carbon nanotubes, among others. In this work, we review the current knowledge of different types of AMPs, their mechanisms of action, and strategies to improve performance.
Journal Article
Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo
by
Kumar, Prashant
,
Kizhakkedathu, Jayachandran
,
Straus, Suzana
in
Animals
,
Antibiotic resistance
,
Antimicrobial agents
2018
Antibiotic resistance is projected as one of the greatest threats to human health in the future and hence alternatives are being explored to combat resistance. Antimicrobial peptides (AMPs) have shown great promise, because use of AMPs leads bacteria to develop no or low resistance. In this review, we discuss the diversity, history and the various mechanisms of action of AMPs. Although many AMPs have reached clinical trials, to date not many have been approved by the US Food and Drug Administration (FDA) due to issues with toxicity, protease cleavage and short half-life. Some of the recent strategies developed to improve the activity and biocompatibility of AMPs, such as chemical modifications and the use of delivery systems, are also reviewed in this article.
Journal Article