Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
241 result(s) for "Ascorbic Acid - isolation "
Sort by:
Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions
Actinidia arguta (kiwiberry) is a fruit with significant health benefits, and research continues to identify factors that enhance its storability while maintaining quality. Special attention is given to antioxidant metabolism and total antioxidant activity. In this study, four cold-storage conditions were tested: normal air, normal air with ozone, modified atmosphere, and controlled atmosphere. In each case, the fruit was either pre-cooled before storage or not. The aim was to identify conditions most favorable to preserving internal and external fruit quality over time. Taking into account most of the basic fruit physicochemical traits tested, it can be assumed that for up to 30 days of storage, each storage method can be useful to store A. arguta fruit. After this period, the fruit stored in a controlled and then modified atmosphere retained the highest and acceptable firmness. Changes in antioxidant content are more complex and depend on the type of compound, storage time, and fruit post-harvest treatment. During the 50-day storage period, marked fluctuations in ascorbate, glutathione, and L-cysteine levels were observed at 10-day intervals. Phenolic content increased initially (after 10 days) and then stabilized. Among the methods used, ozonation led to a relative stabilization or increase in antioxidant content. This method, like the cooling procedure, requires further detailed research to determine its suitability for the species/variety being tested. Changes in antiradical activity were reaction-mechanism-dependent. The activity based on single electron transfer consistently decreased, while that based on hydrogen atom transfer was more stable overall. Contrary to this, the pro-oxidative Fe(II) chelating agent appeared during storage. The health-promoting properties of stored fruit may fluctuate due to antioxidant involvement in adaptation to storage conditions and uneven ripening, which remains a challenge both at harvest and during storage. Any of the three alternatives to cold storage in CA (NA, NA+O, MA) proved beneficial in short-term storage. However, MA has proven to be a similarly effective long-term storage method to CA in terms of the physicochemical quality of A. arguta fruit.
Simultaneous Voltammetric Determination of Acetaminophen, Ascorbic Acid and Uric Acid by Use of Integrated Array of Screen-Printed Electrodes and Chemometric Tools
In the present work, ternary mixtures of Acetaminophen, Ascorbic acid and Uric acid were resolved using the Electronic tongue (ET) principle and Cyclic voltammetry (CV) technique. The screen-printed integrated electrode array having differentiated response for the three oxidizable compounds was formed by Graphite, Prussian blue (PB), Cobalt (II) phthalocyanine (CoPc) and Copper oxide (II) (CuO) ink-modified carbon electrodes. A set of samples, ranging from 0 to 500 µmol·L−1, was prepared, using a tilted (33) factorial design in order to build the quantitative response model. Subsequently, the model performance was evaluated with an external subset of samples defined randomly along the experimental domain. Partial Least Squares Regression (PLS) was employed to construct the quantitative model. Finally, the model successfully predicted the concentration of the three compounds with a normalized root mean square error (NRMSE) of 1.00 and 0.99 for the training and test subsets, respectively, and R2 ≥ 0.762 for the obtained vs. expected comparison graphs. In this way, a screen-printed integrated electrode platform can be successfully used for voltammetric ET applications.
On-Line Monitoring of Vitamin C in Fruit Juice in Processing Plants by Electrochemical Sensor Based on PEDOT-Modified Electrodes: A Feasibility Study
Vitamin C, an antioxidant in most fruits and vegetables, is highly sensitive to heat, pH, metals, light, and oxidation, making it a key marker for nutrient degradation in thermal processing. Research aimed at improving processing methods to maximize vitamin C retention is usually limited to expensive laboratory equipment, which does not reflect real-world conditions in the food industry. On the other hand, traditional methods are not suitable for on-line monitoring. This paper proposes bridging the gap in liquid food processing with a voltammetric sensor based on poly(3,4-ethylenedioxythiophene)-modified screen-printed carbon electrodes. The sensor showed excellent repeatability, with intra-sensor RSD below 5% and inter-sensor RSD below 10% at 250 mg/L of ascorbic acid. Detection and quantification limits were 0.7 and 2.1 mg/L, respectively. Trueness assessment in commercial orange juice with a declared vitamin C content yielded a recovery rate of 94 ± 1%. Selectivity tests with citric acid at concentrations equal to and 20 times higher than that of ascorbic acid showed no significant interference. Shelf-life studies confirmed the stability of the sensor for at least two months. This nanocomposite-based approach balances performance and cost with simple preparation, affordable materials, and a stable coating that allows long-term storage in uncontrolled environments.
Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays
Girardinia diversifolia, also known as Himalayan nettle, is a perennial herb used in Nepal to make fiber as well as in traditional medicine for the treatment of several diseases. To date, phytochemical studies and biological assays on this plant are scarce. Thus, in the present work, the G. diversifolia extracts have been evaluated for their potential pharmaceutical, cosmetic and nutraceutical uses. For this purpose, detailed phytochemical analyses were performed, evidencing the presence of phytosterols, fatty acids, carotenoids, polyphenols and saponins. The most abundant secondary metabolites were β- and γ-sitosterol (11 and 9% dw, respectively), and trans syringin (0.5 mg/g) was the most abundant phenolic. Fatty acids with an abundant portion of unsaturated derivatives (linoleic and linolenic acid at 22.0 and 9.7 mg/g respectively), vitamin C (2.9 mg/g) and vitamin B2 (0.12 mg/g) were also present. The antioxidant activity was moderate while a significant ability to inhibit acetylcholinesterase (AChE), butyrilcholinesterase (BuChE), tyrosinase, α-amylase and α-glucosidase was observed. A cytotoxic effect was observed on human ovarian, pancreatic and hepatic cancer cell lines. The effect in hepatocarcinoma cells was associated to a downregulation of the low-density lipoprotein receptor (LDLR), a pivotal regulator of cellular cholesterol homeostasis. These data show the potential usefulness of this species for possible applications in pharmaceuticals, nutraceuticals and cosmetics.
Application of Chitosan@Fe 3 O 4 Nanoparticle-Modified Screen-Printed Graphene-Based Electrode for Simultaneous Analysis of Nitrite and Ascorbic Acid in Hydroponics and Fruit Juice
In this work, the development of screen-printed electrodes modified with chitosan-coated magnetite nanoparticles (CTS@Fe O /SPGNE) for the simultaneous determination of nitrite (NO ) and ascorbic acid (AA ) is presented. The study investigated various ratios of graphene to chitosan-coated magnetite nanoparticles (CTS@Fe O ), as well as the optimal pH. These factors were examined due to their impact on the selectivity and sensitivity of the analysis. The results indicated that a graphene paste to CTS@Fe O ratio of 16:1.0 g and a pH of 4 were optimal for the analysis of both NO and AA . Additionally, the behavior of the proposed electrode, its analytical performance, and interference studies were thoroughly examined. Furthermore, the CTS@Fe O /SPGNE electrode shows potential for the simultaneous determination of NO and AA in hydroponics and fruit juice samples.
The Bioaccessibility of Antioxidants in Black Currant Puree after High Hydrostatic Pressure Treatment
The aim of the study was to investigate the effect of high-pressure processing (HPP) and thermal processing (TP) on the bioaccessibility of vitamin C and anthocyanins as well as changes in the antioxidant capacity (AC) using ABTS+• and DPPH• tests on blackcurrant (Ribes nigrum L.) puree during the steps in the digestive process. The puree was subjected to HPP at 200, 400, and 600 MPa for 5 min (room temperature) or TP at 85 °C for 10 min. The controls were untreated puree (P) and fruit crushed in a mortar (M). All the samples were digested in a static in vitro digestion model, including the mouth, stomach, and small intestine, and subjected to dialysis. The vitamin C, anthocyanin, and antioxidant capacity were monitored at each step of the digestion process. The potential bioaccessibility of the antioxidants studied was calculated in relation to the undigested sample. TP and HPP enabled a high content of vitamin C, anthocyanins, and AC to be maintained. After simulated digestion in the small intestine, a significant decrease was observed in the vitamin C and anthocyanins (approximately 98%) content. However, a high stability (approximately 70%) of both compounds was noted at the gastric stage. HPP and TP significantly affected the potential bioaccessibility of vitamin C and anthocyanins, although the bioaccessibility of both compounds in the samples treated using HPP was higher than when using TP. Moreover, the potential bioaccessibility of vitamin C after HPP treatment (400 and 600 MPa) was higher than the bioaccessibility calculated for the M and P control samples. TP and HPP treatment negatively affected anthocyanin bioaccessibility after dialysis. The most favorable pressure was 400 MPa, as it allowed maintaining the best antioxidant activity after digestion.
Variation in Antioxidant Attributes at Three Ripening Stages of Guava (Psidium guajava L.) Fruit from Different Geographical Regions of Pakistan
The present investigation was carried out to appraise the levels of total phenols and vitamin C as well as antioxidant potential at three different ripening stages (un-ripe, semi-ripe and fully-ripe) of guava (Psidium guajava L.) fruit collected from three different geographical regions of Pakistan (Islamabad, Faisalabad and Bhakkar). The antioxidant potential of guava fruit extracts was assessed by means of different in-vitro antioxidant assays, namely inhibition of peroxidation in linoleic acid system, reducing power and radical scavenging capability. Overall, fruit at the un-ripe stage (G1) exhibited the highest levels of TPC, TFC, reducing power and DPPH radical scavenging activity, followed by the semi-ripe (G2) and fully-ripe (G3) stages. On the other hand, vitamin C content increased as the fruit maturity progressed, with highest value seen at the fully-ripe stage (G3) followed by the semi-ripe (G2) and un-ripe stage (G1). The concentration of vitamin C in fruits varied as: Faisalabad (136.4–247.9 mg 100 g−1), Islamabad (89.7–149.7 mg 100 g−1) and Bhakkar (73.1–129.5 mg 100 g−1). The results showed that different stages of maturation and geographical locations had profound effects on the antioxidant activity and vitamin C contents of guava fruit.
Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears
Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R2 = 0.90) and ascorbic acid (R2 = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•.
Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS
Capillary electrophoresis is commonly applied for the analysis of pharmaceutical products due to its high separation efficiency and selectivity. For this purpose, electrospray-ionization-(ESI)-interfering additives or electrolytes are often required, which complicates the identification of impurities and degradation products by mass spectrometry (MS). Here, a capillary zone electrophoresis (CZE) method with ultraviolet (UV) absorption detection for the simultaneous determination and quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets was developed. Related degradation products were identified via CZE-CZE-MS. Systematic optimization yielded 100 mM tricine (pH = 8.8) as appropriate background electrolyte, resulting in baseline separation of ascorbic acid, acetylsalicylic acid, and related anionic UV-active degradation products. The CZE-UV method was successfully validated regarding the guidelines of the Food and Drug Administration. The validated method was applied to trace the degradation rate of the active pharmaceutical ingredients at defined ambient conditions. A heart-cut CZE-CZE-MS approach, including a 4-port-nL-valve, was performed for the identification of the observed degradation products. This 2D setup enables a precise cutting of accurate sample volumes (20 nL) and the independent operation of two physically separated CZE dimensions, which is especially beneficial regarding MS detection. Hence, the ESI-interfering tricine electrolyte components were separated from the analytes in a second electrophoretic dimension prior to ESI-MS detection. The degradation products were identified as salicylic acid and mono- and diacetylated ascorbic acid. This setup is expected to be generally applicable for the mass spectrometric characterization of CZE separated analytes in highly ESI-interfering electrolyte systems. Graphical Abstract A CZE-UV method for the quantification of effervescent tablet ingredients and degradation products was developed and validated. In order to identify unknown degradation products separated in the CZE-UV, a 2D heart-cut approach was performed applying a mechanical 4-port-valve. The unknown substances were transferred from the 1st to the 2nd dimension followed by the separation of ESI-interfering tricine from the analytes prior to mass spectrometric detection
A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays
A simple, novel concept for the one-step fabrication of a low-cost, easy-to-use droplet-based electrochemical (EC) sensor is described, in which the EC reagents are contained in a droplet and the droplet assay is operated on a simple planar surface instead of in a complicated closed channel/chamber. In combination with an elegant carbon electrode configuration, screen-printed on a widely available polyethylene terephthalate (PET) substrate, the developed sensor exhibits a stable solution-restriction capacity and acceptable EC response, and thus can be used directly for the detection of different analytes (including ascorbic acid (AA), copper ions (Cu2+), 2′-deoxyguanosine 5′-triphosphate (dGTP) and ferulic acid (FA)), without any pretreatment. The obtained, acceptable linear ranges/detection limits for AA, Cu2+, dGTP and FA are 0.5–10/0.415 mM, (0.0157–0.1574 and 0.1574–1.5736)/0.011 mM, 0.01–0.1/0.008 mM and 0.0257–0.515/0.024 mM, respectively. Finally, the utility of the droplet-based EC sensor was demonstrated for the determination of AA in two commercial beverages, and of Cu2+ in two water samples, with reliable recovery and good stability. The applicability of the droplet-based sensor demonstrates that the proposed EC strategy is potentially a cost-effective solution for a series of biochemical sensing applications in public health, environmental monitoring, and the developing world.