Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
17,699 result(s) for "Automatic data processing"
Sort by:
Automata and computability : programmer's perspective
\"This class-tested textbook provides a comprehensive and accessible introduction to the theory of automata and computation. The author uses illustrations, engaging examples, and historical remarks to make the material interesting and relevant for students. It incorporates modern/handy ideas, such as derivative-based parsing and a Lambda reducer showing the universality of Lambda calculus. The book also shows how to sculpt automata by making the regular language conversion pipeline available through a simple command interface. A Jupyter notebook will accompany the book to feature code, YouTube videos, and other supplements to assist instructors and students\"-- Provided by publisher.
The integration of barcode scanning technology into Canadian public health immunization settings
•We compared barcode scanning of vaccines with manual electronic approaches.•Barcode scanning led to more accurate immunization records.•Barcode scanning was equally or more efficient than manual methods.•Users had generally positive perceptions of this technology.•More sensitive scanners and improved barcode readability may facilitate adoption. As part of a series of feasibility studies following the development of Canadian vaccine barcode standards, we compared barcode scanning with manual methods for entering vaccine data into electronic client immunization records in public health settings. Two software vendors incorporated barcode scanning functionality into their systems so that Algoma Public Health (APH) in Ontario and four First Nations (FN) communities in Alberta could participate in our study. We compared the recording of client immunization data (vaccine name, lot number, expiry date) using barcode scanning of vaccine vials vs. pre-existing methods of entering vaccine information into the systems. We employed time and motion methodology to evaluate time required for data recording, record audits to assess data quality, and qualitative analysis of immunization staff interviews to gauge user perceptions. We conducted both studies between July and November 2012, with 628 (282 barcoded) vials processed for the APH study, and 749 (408 barcoded) vials for the study in FN communities. Barcode scanning led to significantly fewer immunization record errors than using drop-down menus (APH study: 0% vs. 1.7%; p=0.04) or typing in vaccine data (FN study: 0% vs. 5.6%; p<0.001). There was no significant difference in time to enter vaccine data between scanning and using drop-down menus (27.6s vs. 26.3s; p=0.39), but scanning was significantly faster than typing data into the record (30.3s vs. 41.3s; p<0.001). Seventeen immunization nurses were interviewed; all noted improved record accuracy with scanning, but the majority felt that a more sensitive scanner was needed to reduce the occasional failures to read the 2D barcodes on some vaccines. Entering vaccine data into immunization records through barcode scanning led to improved data quality, and was generally well received. Further work is needed to improve barcode readability, particularly for unit-dose vials.
Computing with networks of nonlinear mechanical oscillators
As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words). The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.