Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
48,237 result(s) for "Automation, Laboratory"
Sort by:
A mobile robot bridging manual and automated bioscientific workflows by applying the Swiss army knife principle
The complexity and diversity of bioscientific research laboratories, creates significant challenges for automation. Their varying workflows, personnel, and instruments, often hinder smaller research laboratories to benefit from automated processes, as existing systems seem unsuitable due to low flexibility. Therefore, we developed a versatile robotic system designed to automate a broad range of bioscience laboratory processes. Central to our system and novel, compared to all other kinds of laboratory automation concepts, is a multifunctional end effector, inspired by the Swiss-army-knife, capable of executing multiple tasks, including an operating finger, a camera system, a gripper, and a pipette. This end effector is mounted on a 6-axis robotic arm, supported by a mobile base, enabling easy transport across different bioanalytical laboratory environments. Utilizing windows manipulating scripting routines, allows the automation of diverse software programs including software-based laboratory devices. We demonstrate the capabilities of the Laboratory Automation Robotic System (LARS) by automating the pH buffer adjustments, showcasing its potential to improve efficiency and reproducibility in bioscience research. The resulting prototype allows the integration of any laboratory instrument into a desired automation routine without limitations concerning device interfaces, while using a highly flexible multifunctional end-effector as a replacement of the human hand and eye.
Improvement of bioanalytical parameters through automation: suitability of a hand-like robotic system
Commercial automation systems for small- and medium-sized laboratories, including research environments, are often complex to use. For liquid handling systems (LHS), development is required not only for the robot’s movements but also for adapting the bioanalytical method to the automated system. This study investigates whether a more human-like automation strategy—using a robotic system (RS)—is more suitable for research laboratories than a professional automation approach utilizing a commercial automated LHS. We conducted a series of measurements for protein determination using a Bradford assay manually, with a fully automated LHS, and with our human-like RS. Although the hand-like RS approach requires more than twice the time of the LHS, it achieved the best standard deviation in this setup (RS = 0.5, manual = 0.71, LHS = 0.86). Due to the low limit of detection (LOD) and limit of quantification (LOQ), most protein samples could be quantified with the RS (samples below LOQ = 9.7%, LOD = 0.23; LOQ = 0.25) compared to manual (samples below LOQ = 28.8%, LOD = 0.24; LOQ = 0.26) and the LHS (samples below LOQ = 36.1%, LOD = 0.27; LOQ = 0.31). In another time-dependent enzymatic assay test, the RS achieved results comparable to the manual method and the LHS, although the required time could be a constraint for short incubation times. Our results demonstrate that a more hand-like automation system closely models the manual process, leading easier to accurate bioanalytical results. We conclude that such a system could be more suitable for typical research environments than a complex LHS.
Side-by-Side Comparison of Three Fully Automated SARS-CoV-2 Antibody Assays with a Focus on Specificity
Abstract Background In the context of the COVID-19 pandemic, numerous new serological test systems for the detection of anti-SARS-CoV-2 antibodies rapidly have become available. However, the clinical performance of many of these is still insufficiently described. Therefore, we compared 3 commercial CE-marked, SARS-CoV-2 antibody assays side by side. Methods We included a total of 1154 specimens from pre-COVID-19 times and 65 samples from COVID-19 patients (≥14 days after symptom onset) to evaluate the test performance of SARS-CoV-2 serological assays by Abbott, Roche, and DiaSorin. Results All 3 assays presented with high specificities: 99.2% (98.6–99.7) for Abbott, 99.7% (99.2–100.0) for Roche, and 98.3% (97.3–98.9) for DiaSorin. In contrast to the manufacturers’ specifications, sensitivities only ranged from 83.1% to 89.2%. Although the 3 methods were in good agreement (Cohen’s Kappa 0.71–0.87), McNemar tests revealed significant differences between results obtained from Roche and DiaSorin. However, at low seroprevalences, the minor differences in specificity resulted in profound discrepancies of positive predictive values at 1% seroprevalence: 52.3% (36.2–67.9), 77.6% (52.8–91.5), and 32.6% (23.6–43.1) for Abbott, Roche, and DiaSorin, respectively. Conclusion We found diagnostically relevant differences in specificities for the anti-SARS-CoV-2 antibody assays by Abbott, Roche, and DiaSorin that have a significant impact on the positive predictive values of these tests.
Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth
Dynamic control of gene expression can have far-reaching implications for biotechnological applications and biological discovery. Thanks to the advantages of light, optogenetics has emerged as an ideal technology for this task. Current state-of-the-art methods for optical expression control fail to combine precision with repeatability and cannot withstand changing operating culture conditions. Here, we present a novel fully automatic experimental platform for the robust and precise long-term optogenetic regulation of protein production in liquid Escherichia coli cultures. Using a computer-controlled light-responsive two-component system, we accurately track prescribed dynamic green fluorescent protein expression profiles through the application of feedback control, and show that the system adapts to global perturbations such as nutrient and temperature changes. We demonstrate the efficacy and potential utility of our approach by placing a key metabolic enzyme under optogenetic control, thus enabling dynamic regulation of the culture growth rate with potential applications in bacterial physiology studies and biotechnology. Optogenetics has emerged as a promising means to achieve gene expression control in bioprocess engineering, but current systems cannot respond to fluctuations in growth conditions. Here the authors overcome this limitation and develop an automated optogenetic feedback control system for precise and robust control of protein production in E. coli .
An operating system for the biology lab
Customers can also benefit from the regularity of the data that is produced by Emerald's standardized hardware and software environment. Because each piece of data is linked permanently to the unambiguous script with which it was produced, \"it puts this very rigid, searchable ontology on top of everything\", explains Frezza. STANDARD OPERATING PROCEDURE Ginkgo Bioworks, a biotechnology company in Boston, Massachusetts, has built a syntheticbiology foundry - a facility where, with the help of lab-automation firm Strateos of Menlo Park, California, they automate the design and testing of engineered organisms. Paul Jaschke, a biological engineer at Macquarie University in Sydney, recalls working with Transcriptic, a lab-automation company in Menlo Park, while he was a postdoctoral researcher at Stanford University in California in 2015. Realizing this change might involve replacing manual verification with consistency checks embedded in software, developing business models that separate design and analysis work from experimental execution, or simply communicating a more precise description of what virtualization can offer.
Evaluation of two automated low-cost RNA extraction protocols for SARS-CoV-2 detection
Two automatable in-house protocols for high-troughput RNA extraction from nasopharyngeal swabs for SARS-CoV-2 detection have been evaluated. One hundred forty one SARS-CoV-2 positive samples were collected during a period of 10-days. In-house protocols were based on extraction with magnetic beads and designed to be used with either the Opentrons OT-2 (OT-2in-house) liquid handling robot or the MagMAXTM Express-96 system (MMin-house). Both protocols were tested in parallel with a commercial kit that uses the MagMAXTM system (MMkit). Nucleic acid extraction efficiencies were calculated from a SARS-CoV-2 DNA positive control. No significant differences were found between both in-house protocols and the commercial kit in their performance to detect positive samples. The MMkit was the most efficient although the MMin-house presented, in average, lower Cts than the other two. In-house protocols allowed to save between 350€ and 400€ for every 96 extracted samples compared to the commercial kit. The protocols described harness the use of easily available reagents and an open-source liquid handling system and are suitable for SARS-CoV-2 detection in high throughput facilities.
Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells
Circulating tumor cells (CTCs) are a treasure trove of information regarding the location, type and stage of cancer and are being pursued as both a diagnostic target and a means of guiding personalized treatment. Most isolation technologies utilize properties of the CTCs themselves such as surface antigens (e.g., epithelial cell adhesion molecule or EpCAM) or size to separate them from blood cell populations. We present an automated monolithic chip with 128 multiplexed deterministic lateral displacement devices containing ~1.5 million microfabricated features (12 µm–50 µm) used to first deplete red blood cells and platelets. The outputs from these devices are serially integrated with an inertial focusing system to line up all nucleated cells for multi-stage magnetophoresis to remove magnetically-labeled white blood cells. The monolithic CTC-iChip enables debulking of blood samples at 15–20 million cells per second while yielding an output of highly purified CTCs. We quantified the size and EpCAM expression of over 2,500 CTCs from 38 patient samples obtained from breast, prostate, lung cancers, and melanoma. The results show significant heterogeneity between and within single patients. Unbiased, rapid, and automated isolation of CTCs using monolithic CTC-iChip will enable the detailed measurement of their physicochemical and biological properties and their role in metastasis.
LEGO® as a versatile platform for building reconfigurable low-cost lab equipment
Laboratory equipment is critical for automating tasks in modern scientific research, but often limited by high costs, large footprints, and sustainability concerns. Emerging strategies to provide low-cost research automation tools include microfluidic devices, open-hardware devices, 3D printing, and LEGO ® products. LEGO ® -based equipment may be advantageous with respect to sustainability, since their inherent modularity enables disassembly, re-purposing and re-use. To explore the feasibility and cost savings of replacing conventional lab equipment with LEGO ® -based alternatives, we developed and characterized the performance of three LEGO ® Technic TM laboratory tools: a syringe pump, an orbital shaker, and a microcentrifuge. These three machines share 384 pieces in common and can be constructed in series (687 pieces, <$83 USD) or in parallel (1215 pieces, <$174 USD). As a proof of concept, calcium carbonate microparticles were synthesized and isolated using the LEGO ® -based and analogous commercial equipment, yielding comparatively similar results. Moreover, the ability to program custom shake profiles for the LEGO ® -based orbital shaker gave access to a wider range of particle characteristics than the commercial shaker. We propose that the high cost savings and reusability of LEGO ® -based lab tools extends beyond their well-established efficacy in K-12 STEM education to an attractive resource for budget-, space- and/or sustainability-conscious laboratories.
Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array
The brain’s extracellular matrix (ECM) is a macromolecular network composed of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous proteins. In vitro studies often use purified ECM proteins for cell culture coatings, however these may not represent the molecular complexity and heterogeneity of the brain’s ECM. To address this, we compared neural network activity (over 30 days in vitro ) from primary neurons co-cultured with glia grown on ECM coatings from decellularized brain tissue (bECM) or MaxGel, a non-tissue-specific ECM. Cells were grown on a multi-electrode array (MEA) to enable noninvasive long-term interrogation of neuronal networks. In general, the presence of ECM accelerated the formation of networks without affecting the inherent network properties. However, specific features of network activity were dependent on the type of ECM: bECM enhanced network activity over a greater region of the MEA whereas MaxGel increased network burst rate associated with robust synaptophysin expression. These differences in network activity were not attributable to cellular composition, glial proliferation, or astrocyte phenotypes, which remained constant across experimental conditions. Collectively, the addition of ECM to neuronal cultures represents a reliable method to accelerate the development of mature neuronal networks, providing a means to enhance throughput for routine evaluation of neurotoxins and novel therapeutics.
DNA/RNA Preparation for Molecular Detection
Effective upstream preparation of nucleic acid (NA) is important for molecular techniques that detect unique DNA or RNA sequences. The isolated NA should be extracted efficiently and purified away from inhibitors of a downstream molecular assay. Many NA sample preparation techniques and commercial kits are available. Techniques for cell lysis and isolation or purification of NA were discovered in early NA characterization studies, evolved in the 20th century with molecular techniques, and still serve as the foundation for current methods. Advances in solid phase extraction methods with nonhazardous chemicals and automated systems have changed the way NA is prepared. Factors to consider when selecting NA preparation methods for molecular detection include lysis (from sources as diverse as human cells, viruses, bacterial spores, or protozoan oocysts), DNA vs RNA, sample background, appropriate preparation chemicals, and required detection limits. Methods are also selected on the basis of requirements for a particular application, such as sample volume or removal of inhibitors. Sometimes tradeoffs are made. Good automated and manual methods are available to effectively prepare NA for molecular detection in under an hour. Numerous systems are available for various applications, including techniques that are flexible for multiple sample types, are capable of processing large batches, can be performed in <10 min, or that can yield high-purity NA. When methods are selected using the most applicable combination of lysis isolation efficiency and concentration, NA preparation can be very effective, even for molecular detection of multiple targets from the same sample.