Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,844
result(s) for
"Bacterial Toxins - metabolism"
Sort by:
The pore structure of Clostridium perfringens epsilon toxin
2019
Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by
Clostridium perfringens
, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of β-PFTs (aβ-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double β-barrel, a common feature of the aβ-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications.
Epsilon toxin (Etx) is a potent pore forming toxin (PFT) produced by Clostridium perfringens. Here authors show the cryo-EM structure of the Etx pore assembled on the membrane of susceptible cells and shed light on pore formation and mutant phenotypes.
Journal Article
Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis
by
Couture-Tosi, Evelyne
,
Leendertz, Fabian H.
,
Lander, Angelika
in
Animals
,
Anthrax - microbiology
,
Antigens, Bacterial - genetics
2015
Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d'Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.
Journal Article
Pleiotropic roles of Clostridium difficile sin locus
by
Girinathan, Brintha Parasumanna
,
Govind, Revathi
,
Ou, Junjun
in
Amino Acid Sequence
,
Analysis
,
Animals
2018
Clostridium difficile is the primary cause of nosocomial diarrhea and pseudomembranous colitis. It produces dormant spores, which serve as an infectious vehicle responsible for transmission of the disease and persistence of the organism in the environment. In Bacillus subtilis, the sin locus coding SinR (113 aa) and SinI (57 aa) is responsible for sporulation inhibition. In B. subtilis, SinR mainly acts as a repressor of its target genes to control sporulation, biofilm formation, and autolysis. SinI is an inhibitor of SinR, so their interaction determines whether SinR can inhibit its target gene expression. The C. difficile genome carries two sinR homologs in the operon that we named sinR and sinR', coding for SinR (112 aa) and SinR' (105 aa), respectively. In this study, we constructed and characterized sin locus mutants in two different C. difficile strains R20291 and JIR8094, to decipher the locus's role in C. difficile physiology. Transcriptome analysis of the sinRR' mutants revealed their pleiotropic roles in controlling several pathways including sporulation, toxin production, and motility in C. difficile. Through various genetic and biochemical experiments, we have shown that SinR can regulate transcription of key regulators in these pathways, which includes sigD, spo0A, and codY. We have found that SinR' acts as an antagonist to SinR by blocking its repressor activity. Using a hamster model, we have also demonstrated that the sin locus is needed for successful C. difficile infection. This study reveals the sin locus as a central link that connects the gene regulatory networks of sporulation, toxin production, and motility; three key pathways that are important for C. difficile pathogenesis.
Journal Article
CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors
2018
Abstract
Alterations of the cellular proteome over time due to spontaneous or toxin-mediated enzymatic deamidation of glutamine (Gln) and asparagine (Asn) residues contribute to bacterial infection and might represent a source of aging-related diseases. Here, we put into perspective what is known about the mode of action of the CNF1 toxin from pathogenic Escherichia coli, a paradigm of bacterial deamidases that activate Rho GTPases, to illustrate the importance of determining whether exposure to these factors are risk factors in the etiology age-related diseases, such as cancer. In particular, through in silico analysis of the distribution of the CNF1-like deamidase active site Gly-Cys-(Xaa)n-His sequence motif in bacterial genomes, we unveil the wide distribution of the super-family of CNF-like toxins and CNF-like deamidase domains among members of the Enterobacteriacae and in association with a large variety of toxin delivery systems. We extent our discussion with recent findings concerning cellular systems that control activated Rac1 GTPase stability and provide protection against cancer. These findings point to the urgency for developing holistic approaches toward personalized medicine that include monitoring for asymptomatic carriage of pathogenic toxin-producing bacteria and that ultimately might lead to improved public health and increased lifespans.
CNF-like deamidase modules show high prevalence in the arsenal of a wide spectrum of pathogenic bacterial species therefore representing a risk factor in etiology of aging-related diseases.
Journal Article
Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis
by
Diaz, Maureen H
,
Yasmin, Lubna
,
Veesenmeyer, Jeffrey L
in
14-3-3 Proteins - genetics
,
14-3-3 Proteins - metabolism
,
14-3-3 Proteins/genetics/metabolism
2007
14‐3‐3 proteins are phosphoserine/phosphothreonine‐recognizing adapter proteins that regulate the activity of a vast array of targets. There are also examples of 14‐3‐3 proteins binding their targets via unphosphorylated motifs. Here we present a structural and biological investigation of the phosphorylation‐independent interaction between 14‐3‐3 and exoenzyme S (ExoS), an ADP‐ribosyltransferase toxin of
Pseudomonas aeruginosa
. ExoS binds to 14‐3‐3 in a novel binding mode mostly relying on hydrophobic contacts. The 1.5 Å crystal structure is supported by cytotoxicity analysis, which reveals that substitution of the corresponding hydrophobic residues significantly weakens the ability of ExoS to modify the endogenous targets RAS/RAP1 and to induce cell death. Furthermore, mutation of key residues within the ExoS binding site for 14‐3‐3 impairs virulence in a mouse pneumonia model. In conclusion, we show that ExoS binds 14‐3‐3 in a novel reversed orientation that is primarily dependent on hydrophobic residues. This interaction is phosphorylation independent and is required for the function of ExoS.
Journal Article
Immunoadjuvant Properties of the Rho Activating Factor CNF1 in Prophylactic and Curative Vaccination against Leishmania infantum
by
Ferrua, Bernard
,
Michel, Grégory
,
Marty, Pierre
in
Administration, Intranasal
,
Analysis
,
Animals
2016
There is a need to develop new effective immunoadjuvants for prophylactic or therapeutic vaccines against intracellular pathogens. The activation of Rho GTPases by bacterial cytotoxic necrotizing factor 1 (CNF1) elicits humoral protective responses against protein antigens. Here, we set out to investigate whether CNF1 activity initiates humoral immunity against co-administered parasite antigens and anti-microbial immune signaling. We report that co-administration of wild-type (WT) CNF1 with Leishmania (L.) promastigote antigens at the nasal mucosa triggered prophylactic and curative vaccine responses against this parasite. Vaccination of the mucosa with promastigote lysate antigens combined with WT CNF1 conferred protection against high inoculum L. infantum infection, which reached 82% in the spleen. Immune parameter analysis by antigen recall indicated robust T-helper (Th)1 polarization of immune memory cells, with high IL-2 and IFN-γ production combined with decreased IL-4 production. Additionally, we explored the curative effect of WT CNF1 on previously infected animals. We observed that PL combined with WT CNF1, but not the inactive C866S mutant CNF1 (mCNF1), induced a 58% decrease in the parasite burden in the spleen.
Journal Article
Mechanisms of bacterial persistence during stress and antibiotic exposure
by
Maisonneuve, Etienne
,
Gerdes, Kenn
,
Harms, Alexander
in
Adaptation, Physiological - genetics
,
Adaptation, Physiological - physiology
,
Anti-Bacterial Agents - pharmacology
2016
Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.
Journal Article
A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing
2020
Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques
1
,
2
. Because previously described cytidine deaminases operate on single-stranded nucleic acids
3
, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria
4
. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases
9
,
10
.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.
An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.
Journal Article
Randomised, double-blind, safety and efficacy of a killed oral vaccine for enterotoxigenic E. Coli diarrhoea of travellers to Guatemala and Mexico
by
Bourgeois, August L.
,
Sack, David A.
,
Shimko, Janet
in
Administration, Oral
,
Adolescent
,
Adult
2007
We tested the efficacy of a killed oral vaccine for enterotoxigenic
Escherichia coli (ETEC) diarrhoea to determine if two doses of vaccine with colonization factor antigens (CF) and cholera B subunit would protect against ETEC diarrhoea of travellers. Six hundred seventy-two healthy travellers going to Mexico or Guatemala were studied in a prospective, randomised, placebo-controlled trial. The primary outcome was a vaccine preventable outcome (VPO), defined as an episode of ETEC diarrhoea with an ETEC organism producing heat labile toxin (LT) or CF homologous with the vaccine, without other known causes. The vaccine was safe and stimulated anti-heat labile toxin antibodies. There was a significant decrease in more severe VPO episodes (PE
=
77%,
p
=
0.039) as defined by symptoms that interfered with daily activities or more than five loose stools in a day, although the total number of VPO events did not differ significantly in the vaccine and placebo groups. We conclude that the new oral ETEC vaccine reduces the rate of more severe episodes of traveller's diarrhoea (TD) due to VPO-ETEC, but it did not reduce the overall rate of ETEC diarrhoea or of travellers’ diarrhoea due to other causes.
Journal Article
Decoy exosomes provide protection against bacterial toxins
2020
The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant
Staphylococcus aureus
(MRSA)
1
–
3
. It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin
4
—a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues
2
,
5
,
6
. Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes—extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.
In response to infection with
Staphylococcus aureus
in vitro and in vivo, host cells increase their secretion of exosomes containing ADAM10—vesicular structures that can provide protection by sequestering bacterial toxins.
Journal Article