Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
67 result(s) for "Bacteroidetes - pathogenicity"
Sort by:
The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health
is a relatively new genus of bacteria isolated primarily from medical clinical samples, although at a low rate compared to other genus members of the phylum, which are highly relevant in dysbiosis and disease. According to the taxonomy database at The National Center for Biotechnology Information, the genus consists of 13 species: , and and , and the subspecies subspecies vulgaris (vs. subsp.) are the newest strains featured outside that list. Although typically isolated from the human gut microbiome various species of this genus have been isolated from patients suffering from appendicitis, and abdominal and rectal abscess. It is possible that as spp. emerge, their identification in clinical samples may be underrepresented as novel MS-TOF methods may not be fully capable to discriminate distinct species as separate since it will require the upgrading of MS-TOF identification databases. In terms of pathogenicity, there is contrasting evidence indicating that may have protective effects against some diseases, including liver fibrosis, colitis, cancer immunotherapy, and cardiovascular disease. In contrast, other studies indicate is pathogenic in colorectal cancer and is associated with mental signs of depression. Gut dysbiosis seems to play a role in determining the compositional abundance of in the feces ( ., in non-alcoholic steatohepatitis, hepatic encephalopathy, and liver fibrosis). Since is a relatively recent sub-branch genus of the phylum, and since are commonly associated with chronic intestinal inflammation, this narrative review illustrates emerging immunological and mechanistic implications by which spp. correlate with human health.
The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle
Background The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate. Results Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were dominant in samples from forage-fed animals ( P  < 0.001), while aminoglycoside and streptomycin resistances were enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria , which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to ( Firmicutes + Bacteroidetes ) was confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk assessment of the ruminal microbiome. Conclusions Diet has important effects on the complement of AMR genes in the rumen microbial community, with potential implications for human and animal health.
protein secretion system linked to bacteroidete gliding motility and pathogenesis
Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum.
Characterization of Intestinal Microbiomes of Hirschsprung’s Disease Patients with or without Enterocolitis Using Illumina-MiSeq High-Throughput Sequencing
Hirschsprung-associated enterocolitis (HAEC) is a life-threatening complication of Hirschsprung's disease (HD). Although the pathological mechanisms are still unclear, studies have shown that HAEC has a close relationship with the disturbance of intestinal microbiota. This study aimed to investigate the characteristics of the intestinal microbiome of HD patients with or without enterocolitis. During routine or emergency surgery, we collected 35 intestinal content samples from five patients with HAEC and eight HD patients, including three HD patients with a history of enterocolitis who were in a HAEC remission (HAEC-R) phase. Using Illumina-MiSeq high-throughput sequencing, we sequenced the V4 region of bacterial 16S rRNA, and operational taxonomic units (OTUs) were defined by 97% sequence similarity. Principal coordinate analysis (PCoA) of weighted UniFrac distances was performed to evaluate the diversity of each intestinal microbiome sample. The microbiota differed significantly between the HD patients (characterized by the prevalence of Bacteroidetes) and HAEC patients (characterized by the prevalence of Proteobacteria), while the microbiota of the HAEC-R patients was more similar to that of the HAEC patients. We also observed that the specimens from different intestinal sites of each HD patient differed significantly, while the specimens from different intestinal sites of each HAEC and HAEC-R patient were more similar. In conclusion, the microbiome pattern of the HAEC-R patients was more similar to that of the HAEC patients than to that of the HD patients. The HD patients had a relatively distinct, more stable community than the HAEC and HAEC-R patients, suggesting that enterocolitis may either be caused by or result in a disruption of the patient's uniquely adapted intestinal flora. The intestinal microbiota associated with enterocolitis may persist following symptom resolution and can be implicated in the symptom recurrence.
Discovery of a Novel Periodontal Disease-Associated Bacterium
One of the world’s most common infectious disease, periodontitis (PD), derives from largely uncharacterized communities of oral bacteria growing as biofilms (a.k.a. plaque) on teeth and gum surfaces in periodontal pockets. Bacteria associated with periodontal disease trigger inflammatory responses in immune cells, which in later stages of the disease cause loss of both soft and hard tissue structures supporting teeth. Thus far, only a handful of bacteria have been characterized as infectious agents of PD. Although deep sequencing technologies, such as whole community shotgun sequencing have the potential to capture a detailed picture of highly complex bacterial communities in any given environment, we still lack major reference genomes for the oral microbiome associated with PD and other diseases. In recent work, by using a combination of supervised machine learning and genome assembly, we identified a genome from a novel member of the Bacteroidetes phylum in periodontal samples. Here, by applying a comparative metagenomics read-classification approach, including 272 metagenomes from various human body sites, and our previously assembled draft genome of the uncultivated Candidatus Bacteroides periocalifornicus (CBP) bacterium, we show CBP’s ubiquitous distribution in dental plaque, as well as its strong association with the well-known pathogenic “red complex” that resides in deep periodontal pockets.
Alistipes putredinis CCUG 45780 T exacerbates DSS-induced colitis in mice via modulation of gut microbiota and succinate metabolism
Alistipes is a relatively new genus in the phylum Bacteroidetes, and its role in UC remains unclear. Among its members, Alistipes putredinis is particularly prominent. In this study, we investigated the effects of Alistipes putredinis CCUG 45780 on colitis using both in vitro and in vivo experiments, aiming to provide a theoretical basis for understanding the contribution of gut microbiota to UC pathogenesis. Whole-genome sequencing of Alistipes putredinis CCUG 45780ᵀ revealed 13 virulence genes and 11 resistance genes. Targeted metabolomic analysis identified 9 metabolites significantly increased in the bacterial culture supernatant, among which only succinate exhibited proinflammatory effects. Oral administration of Alistipes putredinis CCUG 45780ᵀ did not cause overt pathogenicity in healthy mice but significantly exacerbated DSS-induced colitis, as indicated by weight loss, elevated disease activity index (DAI) scores, colon shortening, and aggravated mucosal damage. This was accompanied by markedly increased expression of TNF-α, IL-1β, IL-6, and NLRP3. Moreover, treatment altered the gut microbial community, increasing Bacteroidetes abundance while reducing Actinobacteria and Lactobacillus, elevated colonic succinate levels, and upregulated SUCNR1 expression. Collectively, these findings suggest that Alistipes putredinis CCUG 45780ᵀ aggravates colitis through microbiota modulation and succinate-mediated inflammation. Alistipes putredinis CCUG 45780ᵀ exacerbates DSS-induced colitis in mice, likely through gut microbiota dysregulation and succinate-driven inflammatory pathways.
Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction
The vascular dysfunction is the primary event in the occurrence of cardio-vascular risk, and no treatment exists until now. We tested for the first time the hypothesis that chitin-glucan (CG) - an insoluble fibre with prebiotic properties- and polyphenol-rich pomegranate peel extract (PPE) can improve endothelial and inflammatory disorders in a mouse model of cardiovascular disease (CVD), namely by modulating the gut microbiota. Male Apolipoprotein E knock-out (ApoE−/−) mice fed a high fat (HF) diet developed a significant endothelial dysfunction attested by atherosclerotic plaques and increasing abundance of caveolin-1 in aorta. The supplementation with CG + PPE in the HF diet reduced inflammatory markers both in the liver and in the visceral adipose tissue together with a reduction of hepatic triglycerides. In addition, it increased the activating form of endothelial NO-synthase in mesenteric arteries and the heme-nitrosylated haemoglobin (Hb-NO) blood levels as compared with HF fed ApoE−/− mice, suggesting a higher capacity of mesenteric arteries to produce nitric oxide (NO). This study allows to pinpoint gut bacteria, namely Lactobacillus and Alistipes , that could be implicated in the management of endothelial and inflammatory dysfunctions associated with CVD, and to unravel the role of nutrition in the modulation of those bacteria.
The Association of Specific Constituents of the Fecal Microbiota with Immune-Mediated Brain Disease in Dogs
Meningoencephalomyelitis of unknown origin (MUO) is a common, naturally-occurring, clinical disease of pet dogs. It is an immune-mediated condition that has many similarities with experimental autoimmune encephalitis (EAE) in rodents and so investigation of its pathogenesis may aid in understanding factors that contribute to development of multiple sclerosis in people. Gut microbiota are known to modulate immune responses that influence susceptibility to immune-mediated brain disease. In this study we aimed to compare abundance of specific constituents of the fecal microbiota, namely Faecalibacterium prausnitzii and Prevotellaceae, between dogs diagnosed with MUO and matched controls. Fecal samples were obtained from 20 dogs diagnosed with MUO and 20 control dogs matched for breed, age and gender. Bacterial abundance was measured using qPCR and 16S rRNA sequencing. We found that Prevotellaceae were significantly less abundant in cases compared with controls (p = 0.003) but there was no difference in abundance of F.prausnitzii. There was no evidence of other differences in gut microbiota between groups. These data, derived from this naturally-occurring canine clinical model, provide strong corroborative evidence that high abundance of Prevotellaceae in the gut is associated with reduced risk for developing immune-mediated brain disease.
Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures
Background Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. Results Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. Conclusions This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. 5bE3maafB13tm5XCByKxuZ Video Abstract
Single Cell Genomics of Uncultured, Health-Associated Tannerella BU063 (Oral Taxon 286) and Comparison to the Closely Related Pathogen Tannerella forsythia
The uncultivated bacterium Tannerella BU063 (oral taxon 286) is the closest relative to the periodontal pathogen Tannerella forsythia, but is not disease-associated itself. Using a single cell genomics approach, we isolated 12 individual BU063 cells by flow cytometry, and we amplified and sequenced their genomes. Comparative analyses of the assembled genomic scaffolds and their gene contents allowed us to study the diversity of this taxon within the oral community of a single human donor that provided the sample. Eight different BU063 genotypes were represented, all about 5% divergent at the nucleotide level. There were 2 pairs of cells and one group of three that were more highly identical, and may represent clonal populations. We did pooled assemblies on the nearly identical genomes to increase the assembled genomic coverage. The presence of a set of 66 \"core\" housekeeping genes showed that two of the single cell assemblies and the assembly derived from the three putatively identical cells were essentially complete. As expected, the genome of BU063 is more similar to Tannerella forsythia than any other known genome, although there are significant differences, including a 44% difference in gene content, changes in metabolic pathways, loss of synteny, and an 8-9% difference in GC content. Several identified virulence genes of T. forsythia are not found in BU063 including karilysin, prtH, and bspA. The absence of these genes may explain the lack of periodontal pathogenesis by this species and provides a new foundation to further understand the genome evolution and mechanisms of bacterial-host interaction in closely related oral microbes with different pathogenicity potential.