Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,033 result(s) for "Basic-Leucine Zipper Transcription Factors - metabolism"
Sort by:
E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U 34 ). E4F1-mediated direct transcriptional regulation of Dlat and Elp3, two genes encoding key subunits of the PDC and of the Elongator complex, respectively, ensures proper translation fidelity and cell survival in the central nervous system (CNS) during mouse embryonic development. Furthermore, analysis of PDH-deficient cells highlight a crosstalk linking the PDC to ELP3 expression that is perturbed in LS patients.
The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loophelix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.
Arabidopsis thaliana MYC2 and MYC3 Are Involved in Ethylene-Regulated Hypocotyl Growth as Negative Regulators
The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1’s promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.
bZIP factors of the Unfolded Protein Response interact with PIF4 to promote thermomorphogenesis
When Arabidopsis plants are exposed to warm temperatures (e.g., 29 °C), they undergo adaptive growth known as thermomorphogenesis. This process is primarily regulated by the phytochrome B (phyB)-PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) module; however, the potential involvement of additional signaling pathways remains underexplored. Here, we show that warmth triggers endoplasmic reticulum (ER) stress, activating both arms of the Unfolded Protein Response (UPR). Three UPR-associated bZIP transcription factors, bZIP17, bZIP28 and bZIP60, promote hypocotyl growth under warmth in a PIF4-dependent manner. Active bZIP factors form complexes with PIF4 in the nucleus, where they bind to promoter regions of PIF4 and other growth-related genes to enhance their expression. In parallel, bZIPs overexpression counteract the inhibitory effect of phyB on PIF4 stability, thereby reinforcing thermomorphogenic growth. Together, our findings define a regulatory axis that links ER stress, the UPR and thermomorphogenesis, clarifying how plants coordinate physiological and environmental cues to adapt to warming conditions. UPR-derived bZIP factors interact with PIF4 to boost plant growth at moderately elevated temperatures, linking ER stress signaling with temperature-responsive pathways.
Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism
Mitochondrial metabolism is an attractive target for cancer therapy 1 , 2 . Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC) 1 , 3 . Here we show that BTB and CNC homology1 (BACH1) 4 , a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin 5 , 6 , suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours 7 . Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors. The transcription factor BACH1, which targets mitochondrial metabolism, is expressed at high levels in several types of cancer; reducing its expression in tumours makes them more susceptible to treatment with mitochondrial inhibitors.
ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells
Background Adult T-cell leukemia (ATL) is an aggressive malignancy of CD4 + T-cells caused by human T-cell leukemia virus type 1 (HTLV-1). The HTLV-1 bZIP factor ( HBZ ) gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3) as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR), doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2) and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.
Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha
Glutathione is the most abundant cellular thiol and the low molecular weight peptide present in cells. The methylotrophic yeast Ogataea (Hansenula) polymorpha is considered as a promising cell factory for the synthesis of glutathione. In this study, a competitive O. polymorpha glutathione producer was constructed by overexpression of the GSH2 gene, encoding γ-glutamylcysteine synthetase, the first enzyme involved in glutathione biosynthesis, and the MET4 gene coding for central regulator of sulfur metabolism. Overexpression of MET4 gene in the background of overexpressed GSH2 gene resulted in 5-fold increased glutathione production during shake flask cultivation as compared to the wild-type strain, reaching 2167 mg L-1. During bioreactor cultivation, glutathione accumulation by obtained recombinant strain was 5-fold increased relative to that by the parental strain with overexpressed only GSH2 gene, on the first 25 h of batch cultivation in mineral medium. Obtained results suggest involvement of Met4 transcriptional activator in regulation of GSH synthesis in the methylotrophic yeast O. polymorpha.
The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation
Abscisic acid (ABA) reduces accumulation of potentially toxic cadmium (Cd) in plants. How the ABA signal is transmitted to modulate Cd uptake remains largely unclear. Here, we report that the basic region/Leu zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), a central ABA signaling molecule, is involved in ABA-repressed Cd accumulation in plants by physically interacting with a previously uncharacterized R2R3-type MYB transcription factor, MYB49. Overexpression of the Cd-induced MYB49 gene in Arabidopsis (Arabidopsis thaliana) resulted in a significant increase in Cd accumulation, whereas myb49 knockout plants and plants expressing chimeric repressors of MYB49:ERF-associated amphiphilic repression motif repression domain (SRDX49) exhibited reduced accumulation of Cd. Further investigations revealed that MYB49 positively regulates the expression of the basic helix-loop-helix transcription factors bHLH38 and bHLH101 by directly binding to their promoters, leading to activation of IRON-REGULATED TRANSPORTER1, which encodes a metal transporter involved in Cd uptake. MYB49 also binds to the promoter regions of the heavy metal-associated isoprenylated plant proteins (HIPP22) and HIPP44, resulting in up-regulation of their expression and subsequent Cd accumulation. On the other hand, as a feedback mechanism to control Cd uptake and accumulation in plant cells, Cd-induced ABA up-regulates the expression of ABI5, whose protein product interacts with MYB49 and prevents its binding to the promoters of downstream genes, thereby reducing Cd accumulation. Our results provide new insights into the molecular feedback mechanisms underlying ABA signaling-controlled Cd uptake and accumulation in plants.
Antigen exposure in the late light period induces severe symptoms of food allergy in an OVA-allergic mouse model
The mammalian circadian clock controls many physiological processes that include immune responses and allergic reactions. Several studies have investigated the circadian regulation of intestinal permeability and tight junctions known to be affected by cytokines. However, the contribution of circadian clock to food allergy symptoms remains unclear. Therefore, we investigated the role of the circadian clock in determining the severity of food allergies. We prepared an ovalbumin food allergy mouse model and orally administered ovalbumin either late in the light or late in the dark period under light-dark cycle. The light period group showed higher allergic diarrhea and weight loss than the dark period group. The production of type 2 cytokines, IL-13 and IL-5, from the mesenteric lymph nodes and ovalbumin absorption was higher in the light period group than in the dark period group. Compared to the dark period group, the mRNA expression levels of the tight junction proteins were lower in the light period group. We have demonstrated that increased production of type 2 cytokines and intestinal permeability in the light period induced severe food allergy symptoms. Our results suggest that the time of food antigen intake might affect the determination of the severity of food allergy symptoms.
Functional and in silico assessment of MAX variants of unknown significance
The presence of germline mutations affecting the MYC-associated protein X ( MAX ) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense variants of unknown significance (VUS) in MAX affect its pivotal role in the regulation of the MYC/MAX/MXD axis. In the present study, we propose a consensus computational prediction based on five “state-of-the-art” algorithms. We also describe a PC12-based functional assay to assess the effects that 12 MAX VUS may have on MYC’s E-box transcriptional activation. For all but two of these 12 VUS, the functional assay and the consensus computational prediction gave consistent results; we classified seven variants as pathogenic and three as nonpathogenic. The introduction of wild-type MAX cDNA into PC12 cells significantly decreased MYC’s ability to bind to canonical E-boxes, while pathogenic MAX proteins were not able to fully repress MYC activity. Further clinical and molecular evaluation of variant carriers corroborated the results obtained with our functional assessment. In the absence of clear heritability, clinical information, and molecular data, consensus computational predictions and functional models are able to correctly classify VUS affecting MAX . Key messages A functional assay assesses the effects of MAX VUS over MYC transcriptional activity. A consensus computational prediction and the functional assay show high concordance. Variant carriers’ clinical and molecular data support the functional assessment.