Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,880 result(s) for "Beta carotene"
Sort by:
Sensing β-carotene oxidation in photosystem II to master plant stress tolerance
Stressful environmental conditions lead to the production of reactive oxygen species in the chloroplasts, due to limited photosynthesis and enhanced excitation pressure on the photosystems. Among these reactive species, singlet oxygen (¹O₂), which is generated at the level of the PSII reaction center, is very reactive, readily oxidizing macromolecules in its immediate surroundings, and it has been identified as the principal cause of photooxidative damage in plant leaves. The two β-carotene molecules present in the PSII reaction center are prime targets of ¹O₂ oxidation, leading to the formation of various oxidized derivatives. Plants have evolved sensing mechanisms for those PSII-generated metabolites, which regulate gene expression, putting in place defense mechanisms and alleviating the effects of PSII-damaging conditions. A new picture is thus emerging which places PSII as a sensor and transducer in plant stress resilience through its capacity to generate signaling metabolites under excess light energy. This review summarizes new advances in the characterization of the apocarotenoids involved in the PSII-mediated stress response and of the pathways elicited by these molecules, among which is the xenobiotic detoxification.
The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils
Information on the physicochemical variability in rapeseed oil from different varieties during each refining process is lacking. Our purpose was to investigate the physicochemical properties, micronutrients and oxidative stability of the oil extracted from the five varieties of rapeseeds during their different stages of refining process. Increase in the acid value, peroxide value and p-anisidine value were detected in the refining, while content of tocopherols, sterols, β-carotene and phenols, which are regarded as important nutritional compounds diminished. Moreover, the loss rate of total phytosterols of all oils during neutralization (9.23-7.3%) and deodorization (9.97-8.27%) were higher than that of degumming (3.01-0.87%) and bleaching (2.75-1.18%). Deodorization affected total tocopherols contents the most, followed by bleaching, neutralization and degumming. There was a remarkable reduction in total content of phenol, β-carotene and oxygen radical absorbance of all oils during refining. The accumulated information can be used in looking for the optimum condition to meet the basic requirements for oil and minimize micronutrients losses so as to increase their market value.
Outdoor cultivation of microalgae for carotenoid production: current state and perspectives
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.
Mammalian Metabolism of β-Carotene: Gaps in Knowledge
β-carotene is the most abundant provitamin A carotenoid in human diet and tissues. It exerts a number of beneficial functions in mammals, including humans, owing to its ability to generate vitamin A as well as to emerging crucial signaling functions of its metabolites. Even though β-carotene is generally considered a safer form of vitamin A due to its highly regulated intestinal absorption, detrimental effects have also been ascribed to its intake, at least under specific circumstances. A better understanding of the metabolism of β-carotene is still needed to unequivocally discriminate the conditions under which it may exert beneficial or detrimental effects on human health and thus to enable the formulation of dietary recommendations adequate for different groups of individuals and populations worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor in mammals with the aim of identifying the gaps in knowledge that call for immediate attention. We highlight the main questions that remain to be answered in regards to the cleavage, uptake, extracellular and intracellular transport of β-carotene as well as the interactions between the metabolism of β-carotene and that of other macronutrients such as lipids.
CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol
Main conclusion CYP722C from cotton, a homolog of the enzyme involved in orobanchol synthesis in cowpea and tomato, catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Strigolactones (SLs) are important phytohormones with roles in the regulation of plant growth and development. These compounds also function as signaling molecules in the rhizosphere by interacting with beneficial arbuscular mycorrhizal fungi and harmful root parasitic plants. Canonical SLs, such as 5-deoxystrigol (5DS), consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Although it is known that 5DS biosynthesis begins with carlactonoic acid (CLA) derived from β-carotene, the enzyme that catalyzes the conversion of CLA remains elusive. Recently, we identified cytochrome P450 (CYP) CYP722C as the enzyme that catalyzes direct conversion of CLA to orobanchol in cowpea and tomato (Wakabayashi et al., Sci Adv 5:eaax9067, 2019). Orobanchol has a different C-ring configuration from that of 5DS. The present study aimed to characterize the homologous gene, designated GaCYP722C, from cotton ( Gossypium arboreum ) to examine whether this gene is involved in 5DS biosynthesis. Expression of GaCYP722C was upregulated under phosphate starvation, which is an SL-producing condition. Recombinant GaCYP722C was expressed in a baculovirus-insect cell expression system and was found to catalyze the conversion of CLA to 5DS but not to 4-deoxyorobanchol. These results strongly suggest that GaCYP722C from cotton is a 5DS synthase and that CYP722C is the crucial CYP subfamily involved in the generation of canonical SLs, irrespective of the different C-ring configurations.
Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study
Carrot, tomato and papaya represent important dietary sources of β-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of β-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9·5 h after test meal consumption. The bioavailability of β-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of β-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2·6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of β-cryptoxanthin from papayas was shown to be 2·9 and 2·3 times higher than that of the other papaya carotenoids β-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of β-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable β-carotene, β-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries.
Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica
ObjectiveCarotenoids, as potent antioxidant compounds, have gained extensive attention, especially in human health. In this study, the combination of CRISPR/Cas9 integration strategy and fermenter cultivation was utilized to obtain efficient β-carotene-producing Yarrowia lipolytica cell factories for potential industrial application.ResultsThe introduction of the genes of Mucor circinelloides, encoding phytoene dehydrogenase (carB) and bifunctional phytoene synthase/lycopene cyclase (carRP), contributed to the heterologous production of β-carotene in Y. lipolytica XK2. Furthermore, β-carotene production was efficiently enhanced by increasing the copy numbers of the carB and carRP genes and overexpressing of GGS1, ERG13, and HMG, the genes related to the mevalonate (MVA) pathway. Thus, the optimized strain overexpressed a total of eight genes, including three copies of carRP, two copies of carB, and single copies of GGS1, HMG, and ERG13. As a consequence, strain Y. lipolytica XK19 accumulated approximately 408 mg/L β-carotene in shake flask cultures, a twenty-four-fold increase compared to the parental strain Y. lipolytica XK2.Conclusions4.5 g/L β-carotene was obtained in a 5-L fermenter through a combination of genetic engineering and culture optimization, suggesting a great capacity and flexibility of Y. lipolytica in the production of carotenoids.
Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin.
Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae
Background The limitation of storage space, product cytotoxicity and the competition for precursor are the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve β-carotene accumulation in Saccharomyces cerevisiae , a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches. Results The direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of β-carotene in S. cerevisiae . However, due to the competition for precursor between β-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on β-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in β-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to β-carotene pathway and achieved additional 31.7% increase in β-carotene content without adversely affecting cell growth. By inducing an extra constitutive β-carotene synthesis pathway for further conversion precursor farnesol to β-carotene, the final strain produced 11.4 mg/g DCW and 142 mg/L of β-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. Conclusions This strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae . Graphical Abstract
Enzymatic Formation of β-Citraurin from β-Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.