Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Beta macrocarpa"
Sort by:
Nutritional value and functional properties of an underexploited Tunisian wild beet (Beta macrocarpa Guss.) in relation to soil characteristics
The study centers on the valorization of Beta macrocarpa Guss., an endangered Mediterranean wild plant that grows in Tunisia. This plant is disappearing due to a reduction in marginal areas and a lack of awareness of this important crop wild relative (CWR). This prompted us to carry out work to assess the nutritional and functional value of its plant shoots in relation to physicochemical soil properties at three different Tunisian sites covering the north (Sijoumi), the center (Enfidha) and the south (Kerkennah) of the country. All soil samples showed an alkaline pH and high salinity. Sijoumi, Enfidha and Kerkennah soils were classified as loamy, silty clay loamy and sandy, respectively. Chemical analysis revealed that all soils, especially the sandy one, were low in total nitrogen, organic matter and microelements. Plant analysis showed that shoots harvested from the loamy soil presented the highest levels of carbohydrate (19.1 g/100 g FW) and fiber (6.1 g/100 g FW) and the greatest energetic value (94 kcal/100 g FW), whereas shoots collected from the sandy soil showed the highest contents of protein (4.1 g/100 g FW), ash (5.2 g/100 g FW), total polyphenols and flavonoids (39.01 mg GAE/g DW; 27.8 mg CE/g DW), and the greatest DPPH scavenging capacity (IC 50  = 0.74 mg/ml). The results suggest that Beta macrocarpa , which naturally grows in poor and salt-affected soils, could play a crucial role in maintaining the biodiversity and sustainability of agro-ecosystems, particularly in marginal areas, and could also provide an alternative source of food with significant nutritional value and health benefits. Graphical abstract
Insights into the genetic relationships among plants of Beta section Beta using SNP markers
Key message Using a much higher number of SNP markers and larger sample sizes than all the previous studies, we characterized the genetic relationships among wild and cultivated plants of section Beta. We analyzed the genetic variation of Beta section Beta , which includes wild taxa ( Beta macrocarpa , B. patula , B. vulgaris subsp. adanensis and B. vulgaris subsp. maritima ) and cultivars (fodder beet, sugar beet, garden beet, leaf beet, and swiss chards), using 9724 single nucleotide polymorphism markers. The analyses conducted at the individual level without a priori groups confirmed the strong differentiation of B. macrocarpa and B. vulgaris subsp. adanensis from the other taxa. B. vulgaris subsp. maritima showed a complex genetic structure partly following a geographical pattern, which confounded the differences between this taxon and the cultivated varieties. Cultivated varieties were structured into three main groups: garden beets, fodder and sugar beets, and leaf beets and swiss chards. The genetic structure described here will be helpful to correctly estimate linkage disequilibrium and to test for statistical associations between genetic markers and environmental variables.
Taxonomic, spatial and adaptive genetic variation of Beta section Beta
KEY MESSAGE : The genetic variation of Beta section Beta is structured into four taxonomic and spatial clusters. There are significant associations between molecular markers and environmental variables. We investigated the genetic diversity of Beta section Beta, which includes the wild and cultivated relatives of the sugar beet. The taxa included in the study were: Beta vulgaris subsp. maritima, B. vulgaris subsp. adanensis, B. macrocarpa, B. patula and B. vulgaris subsp. vulgaris (garden beet, leaf beet and swiss chards). We collected 1264 accessions originating from the entire distribution area of these taxa and genotyped them for 4436 DArT markers (DArTs). We showed that the genetic variation of these accessions is structured into four taxonomic and spatial clusters: (1) samples of Beta macrocarpa, (2) samples of Beta vulgaris subsp. adanensis, (3) Mediterranean and Asian samples and (4) Atlantic and Northern European samples. These last two clusters were mainly composed of samples of Beta vulgaris subsp. maritima. We investigated in deeper detail the genetic structure of B. vulgaris subsp. maritima, which constituted the majority (80 %) of the wild samples. This subspecies exhibited a clinal genetic variation from South-East to North-West. We detected some markers significantly associated to environmental variables in B. vulgaris subsp. maritima. These associations are interpreted as results of natural selection. The variable most often involved in the associations was annual mean temperature. Therefore, these markers can be useful for the development of frost-tolerant winter beets and drought-tolerant rain-fed beets.
Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5′→3′ Xrn Exoribonuclease Activity
The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the ‘core’ nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this ‘core’ sequence resides a conserved “coremin” motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing “coremin” at its 5′ end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S. cerevisiae ribonuclease mutants identified the 5′-to-3′ exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 ‘core’ sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.
Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection
Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Towards the conservation of crop wild relative diversity in North Africa: checklist, prioritisation and inventory
Crop wild relatives (CWR) are wild species that are more or less genetically related to crops that can be used to introgress useful genes for improvement of productivity, resistance to biotic and abiotic stresses and quality of cultivated crops. They are important in crop improvement to achieve food security for an increasing population and to overcome the challenges caused by climate change and the new virulence of major diseases and pests. These genetic resources are increasingly threatened in their natural habitats through over-exploitation and land reclamation and degradation. Therefore, their efficient and effective conservation would be taxonomically and genetically valuable and will contribute to maintaining and promoting the sustainability of crop diversity, facilitating agricultural production and supporting the increasing demand for food, feed and natural resources. A checklist of 5780 Crop Wild Relatives (CWR) taxa from North Africa was obtained using the CWR Catalogue for Europe and the Mediterranean (PGR Forum). Of which consists 76% of the flora of North Africa. The checklist contains 5588 (~97%) native taxa and 192 introduced. Families with higher taxa richness are Fabaceae, Asteraceae, and Poaceae. These three families constitute more than 33% of the total taxa included in the checklist. About 9% (502) CWR taxa identified as a priority for conservation in North Africa using four criteria, the economic value of the crop, the relatedness degree of wild relatives to their crop, threat status using IUCN red list assessment, and finally the centre of origin and/or diversity of the crop. Of these, 112 taxa were assigned high, 268 medium and 122 low priorities for effective conservation. Those assessed as threatened using IUCN Red list and national assessment represent approximately 2% (119 taxa) of the CWR in the region. However, 21 taxa are assessed as critically endangered (CR), 53 as endangered (EN), and 45 as vulnerable (VU). Wild relatives of some globally important crops are present, with those related to wheat (Triticum aestivum L. and T. durum L.) and barley (Hordeum vulgareL.) among the highest priority crops for the North Africa region. Amongst CWR assessed as threatened, only 8 (6.7%) CWR are related to food crops, Avena agadiriana B.R. Baum. et G. Fedak (VU), A. atlantica B.R. Baum et G. Fedak (VU), A. murphyi Ladiz. (EN), Beta macrocarpa Guss. (EN), Olea europaea subsp. maroccana Guss. (VU), Rorippa hayanicaMaire (VU) and Aegilops bicornis (Forssk.) Jaub. et Spach (VU). The wild relative of Safflower Carthamus glaucus M. Bieb is restricted to Egypt and Libya and assessed as rare in Egypt. The information available about the conservation and threat status of CWR in North Africa still lags behind, and more investigations are required.
Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes
Understanding the factors that contribute to population genetic divergence across a species' range is a long‐standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present‐day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long‐distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life‐history and major geographic features interact to shape the distribution of genetic diversity. We examined the spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Our results support a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. Peculiar genetic structure of inland populations of B. vulgaris subsp. maritima may also indicate the admixture of distinct evolutionary lineages and recent expansions, possibly associated with anthropogenic disturbances in the Mediterranean areas.
Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection
Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV) transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform. The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5) against the non-redundant (NR, NCBI) protein, Swiss-Prot, the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs) were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process. Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.
Chloroplastic and nuclear diversity of wild beets at a large geographical scale: Insights into the evolutionary history of the Beta section
Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the Beta section of the genus Beta, within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (Beta macrocarpa, Beta patula, Beta vulgaris maritima and B.v. adanensis) differing in geographical distribution and mating system. In addition, one of the species, B. macrocarpa, mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section (except B. patula). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section. Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (iii) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa.
Characterization of wild Beta populations in and adjacent to sugar beet fields in the Imperial Valley, California
Populations of wild Beta L. species exist as weeds in commercial sugar beet (Beta vulgaris L. subspecies vulgaris) fields in the Imperial Valley, California. Significant losses to sugar yield and quality result if these wild plants are not removed. In cases of extreme infestation, fields are abandoned without harvest. No selective chemicals are available to differentiate conventional sugar beet from wild relatives and hand removal is labor intensive and expensive. Planting sugar beet varieties with tolerance to glyphosate is a potential solution for infested fields, but risk of gene flow to adjacent wild relatives must be determined. Previous research identified these populations as either Beta vulgaris L. subspecies maritima (L.) Arcang. or Beta macrocarpa Guss. This distinction is critical because B. v. subsp. maritima will readily cross hybridize with cultivated sugar beet while B. macrocarpa rarely will. In April 2011, we collected herbarium samples, mature seed, and leaf tissue from wild Beta populations in 25 infested sugar beet fields throughout the Imperial Valley. Bolting cultivated beets were identified at two locations. Taxonomy of whole plant herbarium samples was unclear due to wild beet stem elongation when under competition with sugar beet plants for canopy light. Morphology of plants from collected seed grown in non-competitive conditions assigned taxonomy of these populations to B. macrocarpa. We used molecular tools to determine the genetic structure of wild Beta populations throughout the Imperial Valley. Extracted DNA was genotyped with 22 simple sequence repeat molecular markers and evaluated for population structure. The bolting beet samples were clearly separated from the majority of B. macrocarpa samples, except for two. The remaining wild populations were further divided into two subgroups suggesting exchange of genetic information or a common ancestor.