Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,617,429
result(s) for
"Biologics"
Sort by:
Biomarkers in Medicine
2022
Biomarkers in Medicine is a comprehensive guide to understanding the current and future status of biomarkers. The book features 27 chapters focusing on disease biomarkers for diseases such as cancer, neurodegenerative diseases, cardiac diseases, metabolic conditions and much more. This book supplies readers with the unique insight of experts in multiple specialties in medicine and life sciences who have extensive experience in diagnostics and clinical laboratories. The book includes case studies and practical examples from different classes of biomarkers on different platforms, including new data for biomarkers in different therapeutic indications. In addition to presenting biomarker information, each chapter covers the relevant pathology and also emphasizes on preclinical and clinical manifestation of the disease process. Clinicians managing patients or clinical trials, clinical researchers, clinical laboratories, diagnostic companies, regulatory agencies, medical school graduate students, academic students, and the general public involved in healthcare delivery will all benefit from information presented in this book.
Ethical and Philosophical Consideration of the Dual-Use Dilemma in the Biological Sciences
2008
This book examines the life-science experiments that give rise to the dual-use dilemma. It therefore addresses a topic of tremendous contemporary importance. This is the first book-length treatment of the subject by professional ethicists.
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
by
Albrecht, Matthias
,
Peterson, Julie A.
,
Jones, Laura
in
Agricultural Science
,
Agricultural sciences
,
Animals
2018
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.
Journal Article
Evolutionary conservation genetics
by
Höglund, Jacob
in
Biodiversity
,
Biodiversity and Conservation Biology
,
Biodiversity conservation
2009
Conservation genetics focuses on understanding the role and requirement of genetic variation for population persistence. However, considerable debate now surrounds the role of genetic factors (as opposed to non-genetic factors such as habitat destruction, etc.) in population extinction, and a synthesis is now timely. Can extinction be explained by habitat destruction alone or is lack of genetic variation a part of the explanation? The book reviews the arguments for a role of genetics in the present biodiversity crisis. It describes the methods used to study genetic variation in endangered species and examines the influence of genetic variation in the extinction of species. To date, conservation genetics has predominantly utilized neutral genetic markers, e.g., microsatellites. However, with the recent advances in molecular genetics and genomics it will soon be possible to study ‘direct gene action’, following the fate of genetic variation at the level of DNA, through expression, to proteins in order to determine how such phenotypes fare in populations of free living organisms. This book explores these exciting avenues of future research potential, integrating ecological quantitative genetics with the new genome science. It is now more important than ever that we ask relevant questions about the evolutionary fate of endangered populations throughout the globe and incorporate our knowledge of evolutionary processes and the distribution of genetic diversity into effective conservation planning and action.