Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33
result(s) for
"CEACAM"
Sort by:
The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils
by
Gray-Owen, Scott
,
Haas, Rainer
,
Ishikawa-Ankerhold, Hellen
in
Antibodies
,
Bacteria
,
Bone marrow
2020
Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori , and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori -CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology. The cag type IV secretion system ( cag -T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori , via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology. IMPORTANCE Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori , and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori -CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology.
Journal Article
Mouse Gastric Epithelial Cells Resist CagA Delivery by the Helicobacter pylori Type IV Secretion System
by
Yamamoto, Masami
,
Nomura, Sachiyo
,
Murata-Kamiya, Naoko
in
Adhesins, Bacterial - genetics
,
Adhesins, Bacterial - metabolism
,
Animals
2022
The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ–Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer.
Journal Article
Extracellular vesicles expressing CEACAM proteins in the urine of bladder cancer patients
2022
Early detection and long‐term monitoring are important for urothelial carcinoma of the bladder (UCB). Urine cytology and existing markers have insufficient diagnostic performance. Here, we examined medium‐sized extracellular vesicles (EVs) in urine to identify specific markers for UCB and evaluated their usefulness as diagnostic material. To identify specific markers in urinary EVs derived from UCB, we undertook shotgun proteomics using urine from four UCB patients and four healthy subjects. Next, 29 healthy specimens, 18 noncancer specimens, and 33 UCB specimens, all from men, were analyzed for urinary EVs by flow cytometry to evaluate the diagnostic performance of UCB‐specific EVs. Nanoparticle‐tracking analysis indicated that the size of EVs extracted from urine was mostly <400 nm. By shotgun proteomics, we detected several proteins characteristic of UCB and found that carcinoembryonic antigen‐related adhesion molecule (CEACAM) proteins were increased in patients. Flow cytometric analysis revealed that the degree of expression of CEACAM1, CEACAM5, and CEACAM6 proteins on the surface of EVs varied among patients. Extracellular vesicles expressing CEACAM proteins also expressed mucin 1, suggesting that they were derived from tumorigenic uroepithelial cells. The number of EVs expressing CEACAM1, 5, and 6 proteins was significantly increased in UCB (mean ± SD, 8.6 ± 13%) compared to non‐UCB (0.69 ± 0.46) and healthy (0.46 ± 0.34) by flow cytometry. The results of receiver operating characteristic (ROC) analysis showed a good score of area under the ROC curve of 0.907. We identified EVs that specifically express CEACAM proteins in urine and have potential for diagnostic applications. These EVs are potential targets in a new liquid biopsy test for UCB patients. ・Increased CEACAM proteins was found in EV fraction of urine from patients with bladder cancer by shotgun proteomics. ・Urinary EVs expressing CEACAM proteins, characterized by flow cytometry, are also accompanied by MUC1, which is increased in patients with bladder cancer. ・EVs expressing CEACAM proteins in urine have good diagnostic performance to detect bladder cancer patients.
Journal Article
CEACAMs serve as toxin-stimulated receptors for enterotoxigenic Escherichia coli
by
Tumala, Brunda
,
Fleckenstein, James M.
,
Bhuiyan, Taufiqur Rahman
in
Adhesins, Bacterial - metabolism
,
Adhesion
,
Antigens, CD - genetics
2020
The enterotoxigenic Escherichia coli (ETEC) are among the most common causes of diarrheal illness and death due to diarrhea among young children in low-/middle-income countries (LMICs). ETEC have also been associated with important sequelae including malnutrition and stunting, placing children at further risk of death from diarrhea and other infections. Our understanding of the molecular pathogenesis of acute diarrheal disease as well as the sequelae linked to ETEC are still evolving. It has long been known that ETEC heat-labile toxin (LT) activates production of cAMP in the cell, signaling the modulation of cellular ion channels that results in a net efflux of salt and water into the intestinal lumen, culminating in watery diarrhea. However, as LT also promotes ETEC adhesion to intestinal epithelial cells, we postulated that increases in cAMP, a critical cellular “second messenger,” may be linked to changes in cellular architecture that favor pathogen–host interactions. Indeed, here we show that ETEC use LT to up-regulate carcinoembryonic antigenrelated cell adhesion molecules (CEACAMs) on the surface of small intestinal epithelia, where they serve as critical bacterial receptors. Moreover, we show that bacteria are specifically recruited to areas of CEACAM expression, in particular CEACAM6, and that deletion of this CEACAM abrogates both bacterial adhesion and toxin delivery. Collectively, these results provide a paradigm for the molecular pathogenesis of ETEC in which the bacteria use toxin to drive up-regulation of cellular targets that enhances subsequent pathogen–host interactions.
Journal Article
Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line
2016
Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.
Journal Article
Interactions of pathogenic Escherichia coli with CEACAMs
2023
The pathogenic Escherichia coli can be parsed into specific variants (pathovars) depending on their phenotypic behavior and/or expression of specific virulence factors. These pathogens are built around chromosomally-encoded core attributes and through acquisition of specific virulence genes that direct their interaction with the host. Engagement of E. coli pathovars with CEACAMs is determined both by core elements common to all E. coli as well as extrachromosomally-encoded pathovar-specific virulence traits, which target amino terminal immunoglobulin variable-like (IgV) regions of CEACAMs. Emerging data suggests that engagement of CEACAMs does not unilaterally benefit the pathogen and that these interactions may also provide an avenue for pathogen elimination.
Journal Article
Markers of Hepatic Insulin Clearance and Their Association With Steatosis in Hyperinsulinaemic Horses
2025
Background Hyperinsulinaemia (HI) is an important feature of Equine Metabolic Syndrome (EMS). It has been suggested that reduced hepatic clearance of insulin contributes to HI, particularly in humans affected by metabolic dysfunction‐associated steatotic liver disease (MASLD). Hypothesis In obese horses with HI, insulin clearance is impaired and associated with MASLD. Animals Tissue samples were collected at post‐mortem from clinically well‐characterized horses with HI (n = 13; basal insulin > 20 mIU/l) and without HI (control; n = 20). Methods Retrospective observational study. Molecular drivers of hepatic clearance (CAECAM‐1, an insulin chaperone protein and IDE‐Insulin Degrading Enzyme) were quantified by RT‐qPCR and activity, respectively, in liver tissue. Fixed liver sections stained with hematoxylin and eosin (H&E) were assigned a histological score by two blinded observers using an equine liver disease score and a human MASLD score. Triglyceride (TG) content in liver sections, serum liver enzymes, ACTH, basal insulin, and serum triglycerides were also measured. Results IDE activity was 2.73 (IQR 4.00 activity/mg of protein) in HI horses and 2.18 (IQR 0.55) in controls (p = 0.07). IDE activity correlated negatively with insulin (rho = 0.561, p = 0.04) but not with liver or serum TG. CEACAM‐1 gene expression was higher in the HI group (2.09 ± 1.79 folds) than in controls (0.69 ± 0.62, p = 0.03). Liver disease and MASLD scores were no different between groups, whereas triglyceride liver content was higher in horses with HI (504.83 IQR 217.51 nmol/g) compared to controls (363.58 IQR 67.32 nmol/g, p = 0.04). Conclusions and Clinical Relevance MASLD is not consistently present in HI horses, but CAECAM‐1 expression is higher.
Journal Article
Old and New Blood Markers in Human Colorectal Cancer
2022
Cancer is a predominant cause of mortality all over the world. Lung, prostate, and colorectal cancer are the more frequent in men while breast and colorectal have a high incidence in women. Major progress aside, some cancers are still frequent and one major issue is improvements in detection methods. Imaging techniques have a major role, but inflammatory, tumoral markers and calculated scores may contribute to the assessment of prognosis. The erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and carcinoembryonic antigen cell adhesion molecule (CEACAM) have been used for decades and do not have a clear use for diagnosis or prognosis yet. The CEACAM family includes 12 human members, and some of them have a cluster differentiation (CD). CD66 may be an interesting indicator of disease severity. Beside interleukin-6 (IL-6), the high level of which is observed in patients with a high mortality rate, other cytokines IL-17A, IL-22, and transforming growth factor -β (TGF-β) are expressed at the tumor level. The detection of circulating tumor cells has been improved but is still of undetermined value. Circulating tumor DNA (ctDNA) was recently studied in CRC stage II patients and may be helpful for chemotherapy management.
Journal Article
Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis
by
Gonzalez, Catherine
,
Lutfalla, Georges
,
Castaño Valencia, Lina
in
Analysis
,
Antigens
,
Biology and Life Sciences
2021
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio . Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Journal Article
Two waves of evolution in the rodent pregnancy-specific glycoprotein (Psg) gene family lead to structurally diverse PSGs
by
Zimmermann, Wolfgang
,
Kammerer, Robert
in
Analysis
,
Animal Genetics and Genomics
,
Aquatic mammals
2023
Background
The evolution of pregnancy-specific glycoprotein (PSG) genes within the CEA gene family of primates correlates with the evolution of hemochorial placentation about 45 Myr ago. Thus, we hypothesized that hemochorial placentation with intimate contact between fetal cells and maternal immune cells favors the evolution and expansion of PSGs. With only a few exceptions, all rodents have hemochorial placentas thus the question arises whether
Psgs
evolved in all rodent genera.
Results
In the analysis of 94 rodent species from 4 suborders, we identified
Psg
genes only in the suborder Myomorpha in three families (characteristic species in brackets), namely Muridae (mouse), Cricetidae (hamster) and Nesomyidae (giant pouched rat). All
Psgs
are located, as previously described for mouse and rat, in a region of the genome separated from the
Cea
gene family locus by several megabases, further referred to as the rodent
Psg
locus. In the suborders Castorimorpha (beaver), Hystricognatha (guinea pig) and Sciuromorpha (squirrel), neither
Psg
genes nor so called CEA-related cell adhesion molecule (
Ceacam
) genes were found in the
Psg
locus. There was even no evidence for the existence of
Psgs
in any other genomic region. In contrast to the
Psg
-harboring rodent species, which do not have activating CEACAMs, we were able to identify
Ceacam
genes encoding activating CEACAMs in all other rodents studied. In the
Psg
locus, there are genes encoding three structurally distinct CEACAM/PSGs: (i) CEACAMs composed of one N- and one A2-type domain (CEACAM9, CEACAM15), (ii) composed of two N domains (CEACAM11-CEACAM14) and (iii) composed of three to eight N domains and one A2 domain (PSGs). All of them were found to be secreted glycoproteins preferentially expressed by trophoblast cells, thus they should be considered as PSGs.
Conclusion
In rodents
Psg
genes evolved only recently in the suborder Myomorpha shortly upon their most recent common ancestor (MRCA) has coopted the retroviral genes syncytin-A and syncytin-B which enabled the evolution of the three-layered trophoblast. The expansion of
Psgs
is limited to the
Psg
locus most likely after a translocation of a CEA-related gene – possibly encoding an ITAM harboring CEACAM. According to the expression pattern two waves of gene amplification occurred, coding for structurally different PSGs.
Journal Article