Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
27,786 result(s) for "COVID-19 Testing"
Sort by:
Daily testing for contacts of individuals with SARS-CoV-2 infection and attendance and SARS-CoV-2 transmission in English secondary schools and colleges: an open-label, cluster-randomised trial
School-based COVID-19 contacts in England have been asked to self-isolate at home, missing key educational opportunities. We trialled daily testing of contacts as an alternative to assess whether this resulted in similar control of transmission, while allowing more school attendance. We did an open-label, cluster-randomised, controlled trial in secondary schools and further education colleges in England. Schools were randomly assigned (1:1) to self-isolation of school-based COVID-19 contacts for 10 days (control) or to voluntary daily lateral flow device (LFD) testing for 7 days with LFD-negative contacts remaining at school (intervention). Randomisation was stratified according to school type and size, presence of a sixth form, presence of residential students, and proportion of students eligible for free school meals. Group assignment was not masked during procedures or analysis. Coprimary outcomes in all students and staff were COVID-19-related school absence and symptomatic PCR-confirmed COVID-19, adjusted for community case rates, to estimate within-school transmission (non-inferiority margin <50% relative increase). Analyses were done on an intention-to-treat basis using quasi-Poisson regression, also estimating complier average causal effects (CACE). This trial is registered with the ISRCTN registry, ISRCTN18100261. Between March 18 and May 4, 2021, 204 schools were taken through the consent process, during which three decided not to participate further. 201 schools were randomly assigned (control group n=99, intervention group n=102) in the 10-week study (April 19–May 10, 2021), which continued until the pre-appointed stop date (June 27, 2021). 76 control group schools and 86 intervention group schools actively participated; additional national data allowed most non-participating schools to be included in analysis of coprimary outcomes. 2432 (42·4%) of 5763 intervention group contacts participated in daily contact testing. There were 657 symptomatic PCR-confirmed infections during 7 782 537 days-at-risk (59·1 per 100 000 per week) in the control group and 740 during 8 379 749 days-at-risk (61·8 per 100 000 per week) in the intervention group (intention-to-treat adjusted incidence rate ratio [aIRR] 0·96 [95% CI 0·75–1·22]; p=0·72; CACE aIRR 0·86 [0·55–1·34]). Among students and staff, there were 59 422 (1·62%) COVID-19-related absences during 3 659 017 person-school-days in the control group and 51 541 (1·34%) during 3 845 208 person-school-days in the intervention group (intention-to-treat aIRR 0·80 [95% CI 0·54–1·19]; p=0·27; CACE aIRR 0·61 [0·30–1·23]). Daily contact testing of school-based contacts was non-inferior to self-isolation for control of COVID-19 transmission, with similar rates of symptomatic infections among students and staff with both approaches. Infection rates in school-based contacts were low, with very few school contacts testing positive. Daily contact testing should be considered for implementation as a safe alternative to home isolation following school-based exposures. UK Government Department of Health and Social Care.
Rapid coronavirus tests: a guide for the perplexed
Scientists still debate whether millions of cheap, fast diagnostic kits will help control the pandemic. Here’s why. Scientists still debate whether millions of cheap, fast diagnostic kits will help control the pandemic. Here’s why.
Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics
As one of the major approaches in combating the COVID-19 pandemics, the availability of specific and reliable assays for the SARS-CoV-2 viral genome and its proteins is essential to identify the infection in suspected populations, make diagnoses in symptomatic or asymptomatic individuals, and determine clearance of the virus after the infection. For these purposes, use of the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for detection of the viral nucleic acid remains the most valuable in terms of its specificity, fast turn-around, high-throughput capacity, and reliability. It is critical to update the sequences of primers and probes to ensure the detection of newly emerged variants. Various assays for increased levels of IgG or IgM antibodies are available for detecting ongoing or past infection, vaccination responses, and persistence and for identifying high titers of neutralizing antibodies in recovered individuals. Viral genome sequencing is increasingly used for tracing infectious sources, monitoring mutations, and subtype classification and is less valuable in diagnosis because of its capacity and high cost. Nanopore target sequencing with portable options is available for a quick process for sequencing data. Emerging CRISPR-Cas-based assays, such as SHERLOCK and AIOD-CRISPR, for viral genome detection may offer options for prompt and point-of-care detection. Moreover, aptamer-based probes may be multifaceted for developing portable and high-throughput assays with fluorescent or chemiluminescent probes for viral proteins. In conclusion, assays are available for viral genome and protein detection, and the selection of specific assays depends on the purposes of prevention, diagnosis and pandemic control, or monitoring of vaccination efficacy. During the COVID-19 pandemics, sensitive and reliable assays for SARS-CoV-2 detection are essential for screening the population, identifying asymptomatic individuals, making diagnoses, monitoring treatment responses, and determining viral clearance. This review summarizes the principles, advantages, disadvantages, and specific applications of currently available assays for detection of the viral nucleotide, genome or proteins, as well as host antibody responses, and provide overall guidelines for selection of optimal assays for specific usage.
Detection technologies and recent developments in the diagnosis of COVID-19 infection
COVID-19 is a disease caused by SARS-CoV-2 capable of causing mild to severe infections in humans. Since its first appearance in China in December 2019, the pandemic has spread rapidly throughout the world. Despite considerable efforts made to contain the disease, the virus has continued its prevalence in many countries with varying degrees of clinical manifestations. To contain this pandemic, collaborative approach involving accurate diagnosis, epidemiology, surveillance, and prophylaxis is essential. However, proper diagnosis using rapid technologies plays a crucial role. With increasing incidence of COVID-19 cases, the accurate and early detection of the SARS-CoV-2 is need of the hour for effective prevention and management of COVID-19 cases as well as to curb its spread. RT-qPCR assay is considered to be the gold standard for the early detection of virus, but this protocol has limited application to use as bedside test because of its technical complexity. To address these challenges, several POC assays have been developed to facilitate the COVID-19 diagnosis outside the centralized testing laboratories as well to accelerate the clinical decision making with a least turnaround time. Hence, in this report, we review different nucleic acid-based and serological techniques available for the diagnosis and effective prevention of COVID-19.Key points• Provides comprehensive information on the different diagnostic tools available for COVID-19• Nucleic acid based tests or antigen detection tests are used for diagnostic purpose• Accurate diagnosis is essential for the efficient management of COVID-19
Diagnostics for COVID-19: moving from pandemic response to control
Diagnostics have proven to be crucial to the COVID-19 pandemic response. There are three major methods for the detection of SARS-CoV-2 infection and their role has evolved during the course of the pandemic. Molecular tests such as PCR are highly sensitive and specific at detecting viral RNA, and are recommended by WHO for confirming diagnosis in individuals who are symptomatic and for activating public health measures. Antigen rapid detection tests detect viral proteins and, although they are less sensitive than molecular tests, have the advantages of being easier to do, giving a faster time to result, of being lower cost, and able to detect infection in those who are most likely to be at risk of transmitting the virus to others. Antigen rapid detection tests can be used as a public health tool for screening individuals at enhanced risk of infection, to protect people who are clinically vulnerable, to ensure safe travel and the resumption of schooling and social activities, and to enable economic recovery. With vaccine roll-out, antibody tests (which detect the host's response to infection or vaccination) can be useful surveillance tools to inform public policy, but should not be used to provide proof of immunity, as the correlates of protection remain unclear. All three types of COVID-19 test continue to have a crucial role in the transition from pandemic response to pandemic control.
Considerations for diagnostic COVID-19 tests
During the early phase of the coronavirus disease 2019 (COVID-19) pandemic, design, development, validation, verification and implementation of diagnostic tests were actively addressed by a large number of diagnostic test manufacturers. Hundreds of molecular tests and immunoassays were rapidly developed, albeit many still await clinical validation and formal approval. In this Review, we summarize the crucial role of diagnostic tests during the first global wave of COVID-19. We explore the technical and implementation problems encountered during this early phase in the pandemic, and try to define future directions for the progressive and better use of (syndromic) diagnostics during a possible resurgence of COVID-19 in future global waves or regional outbreaks. Continuous global improvement in diagnostic test preparedness is essential for more rapid detection of patients, possibly at the point of care, and for optimized prevention and treatment, in both industrialized countries and low-resource settings.In this Review, Vandenberg et al. explore the crucial role of diagnostic tests during the first global wave of coronavirus disease 2019 (COVID-19) and the technical and implementation problems encountered during the early phase of the pandemic, and they define future directions for the progressive and better use of diagnostics during a possible resurgence of COVID-19 in future global waves or regional outbreaks.
Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial
The Ad5-nCoV vaccine is a single-dose adenovirus type 5 (Ad5) vectored vaccine expressing the SARS-CoV-2 spike protein that was well-tolerated and immunogenic in phase 1 and 2 studies. In this study, we report results on the final efficacy and interim safety analyses of the phase 3 trial. This double-blind, randomised, international, placebo-controlled, endpoint-case driven, phase 3, clinical trial enrolled adults aged 18 years older at study centres in Argentina, Chile, Mexico, Pakistan, and Russia. Participants were eligible for the study if they had no unstable or severe underlying medical or psychiatric conditions; had no history of a laboratory-confirmed SARS-CoV-2 infection; were not pregnant or breastfeeding; and had no previous receipt of an adenovirus-vectored, coronavirus, or SARS-CoV-2 vaccine. After informed consent was obtained, 25 mL of whole blood was withdrawn from all eligible participants who were randomised in a 1:1 ratio to receive a single intramuscular dose of 0·5 mL placebo or a 0·5 mL dose of 5 × 1010 viral particle (vp)/mL Ad5-nCoV vaccine; study staff and participants were blinded to treatment allocation. All participants were contacted weekly by email, telephone, or text message to self-report any symptoms of COVID-19 illness, and laboratory testing for SARS-CoV-2 was done for all participants with any symptoms. The primary efficacy objective evaluated Ad5-nCoV in preventing symptomatic, PCR-confirmed COVID-19 infection occurring at least 28 days after vaccination in all participants who were at least 28 days postvaccination on Jan 15, 2021. The primary safety objective evaluated the incidence of any serious adverse events or medically attended adverse events postvaccination in all participants who received a study injection. This trial is closed for enrolment and is registered with ClinicalTrials.gov (NCT04526990). Study enrolment began on Sept 22, 2020, in Pakistan, Nov 6, 2020, in Mexico, Dec 2, 2020, in Russia and Chile, and Dec 17, 2020, in Argentina; 150 endpoint cases were reached on Jan 15, 2021, triggering the final primary efficacy analysis. One dose of Ad5-nCoV showed a 57·5% (95% CI 39·7–70·0, p=0·0026) efficacy against symptomatic, PCR-confirmed, COVID-19 infection at 28 days or more postvaccination (21 250 participants; 45 days median duration of follow-up [IQR 36–58]). In the primary safety analysis undertaken at the time of the efficacy analysis (36 717 participants), there was no significant difference in the incidence of serious adverse events (14 [0·1%] of 18 363 Ad5-nCoV recipients and 10 [0·1%] of 18 354 placebo recipients, p=0·54) or medically attended adverse events (442 [2·4%] of 18 363 Ad5-nCoV recipients and 411 [2·2%] of 18 354 placebo recipients, p=0·30) between the Ad5-nCoV or placebo groups, or any serious adverse events considered related to the study product (none in both Ad5-nCoV and placebo recipients). In the extended safety cohort, 1004 (63·5%) of 1582 of Ad5-nCoV recipients and 729 (46·4%) of 1572 placebo recipients reported a solicited systemic adverse event (p<0·0001), of which headache was the most common (699 [44%] of Ad5-nCoV recipients and 481 [30·6%] of placebo recipients; p<0·0001). 971 (61·3%) of 1584 Ad5-nCoV recipients and 314 (20·0%) of 1573 placebo recipients reported an injection-site adverse event (p<0·0001), of which pain at the injection site was the most frequent; reported by 939 (59%) Ad5-nCoV recipients and 303 (19%) placebo recipients. One dose of Ad5-nCoV is efficacious and safe in healthy adults aged 18 years and older. CanSino Biologics and the Beijing Institute of Biotechnology.
Diagnostics for SARS-CoV-2 infections
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large. This Review highlights the progress that has been made in the development of diagnostic tools for the detection of SARS-CoV-2 in the fight against COVID-19.
Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling
The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities. Validation of this protocol is performed using traditionally collected serum as well as dried blood on mail-in blood sampling kits. Archival (pre-2019) samples are used as negative controls, and convalescent, PCR-diagnosed COVID-19 patient samples serve as positive controls. Using this protocol, minimal cross-reactivity is observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses, and no cross reactivity is observed with anti-influenza A H1N1 HAI. Our protocol may thus help provide standardized, population-based data on the extent of SARS-CoV-2 seropositivity, immunity and infection. Understanding the infection parameters and host responses against SARS-CoV-2 require data from large cohorts using standardized methods. Here, the authors optimize a serum ELISA protocol that has minimal cross-reactivity and flexible sample collection workflow in an attempt to standardize data generation and help inform on COVID-19 pandemic and immunity.
Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern
A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive ( n  = 107) and PCR-negative ( n  = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February–March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON ® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden’s index analyses were performed to further characterize the assays’ overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.