Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37,598
result(s) for
"Cell Death - genetics"
Sort by:
Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death
2022
The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH
2
-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death
.
In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson’s Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.
Journal Article
Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial
2021
Pembrolizumab (PD-1 inhibitor) and cetuximab (EGFR inhibitor) are active as single agents and in combination with cytotoxic chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Given each drug's single agent activity and unique mechanism of action, we aimed to evaluate the anti-tumour activity of PD-1 blockade with EGFR inhibition in recurrent or metastatic HNSCC.
This study is an open-label, non-randomised, multi-arm, phase 2 trial done at four academic centres in the USA. Participants were required to have platinum-resistant or platinum-ineligible, recurrent or metastatic HNSCC, be at least 18 years old, have an Eastern Cooperative Oncology Group performance status 0–1, have measurable disease per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and to have received no previous immunotherapy or EGFR inhibition. All participants received pembrolizumab 200 mg intravenously every 3 weeks, combined with an initial loading dose of cetuximab 400 mg/m2 intravenously followed by 250 mg/m2 intravenously weekly (21 day cycle). The primary endpoint was overall response rate defined as the proportion of participants with a partial or complete responses (per RECIST version 1.1) by 6 months in the intention-to-treat population. The safety population included all participants who received at least one dose of pembrolizumab. Herein, the final analysis of cohort 1 (no previous PD-1, PD-L1, or EGFR inhibition for recurrent or metastatic HNSCC) is reported. Three additional cohorts (two for participants with a previous response to immunotherapy followed by relapse or progression, with or without previous cetuximab exposure, and one for cutaneous HNSCC) will be reported separately once fully accrued. This study is registered with ClinicalTrials.gov, NCT03082534, and remains open as the three additional cohorts are actively accruing participants.
Between March 22, 2017, and July 16, 2019, 33 participants were enrolled to cohort 1. All 33 participants received at least one dose of pembrolizumab. Median follow-up duration was 7·3 months (IQR 3·9–10·9). By 6 months, the overall response rate was 45% (95% CI 28–62), with 15 of 33 participants achieving a partial response. The most common grade 3–4 treatment-related adverse event was oral mucositis (three [9%] of 33 participants), and serious treatment-related adverse events occurred in five (15%) participants. No treatment-related deaths occurred.
Pembrolizumab combined with cetuximab shows promising clinical activity for recurrent or metastatic HNSCC, and merits further investigation.
Merck Sharp & Dohme.
Journal Article
Chaperone-mediated autophagy is involved in the execution of ferroptosis
by
Shan, Bing
,
Wu, Zheming
,
Wu, Guowei
in
Activation
,
Apoptosis - drug effects
,
Apoptosis - genetics
2019
Necroptosis and ferroptosis are two distinct necrotic cell death modalities with no known common molecular mechanisms. Necroptosis is activated by ligands of death receptors such as tumor necrosis factor-α (TNF-α) under caspase-deficient conditions, whereas ferroptosis is mediated by the accumulation of lipid peroxides upon the depletion/or inhibition of glutathione peroxidase 4 (GPX4). The molecular mechanism that mediates the execution of ferroptosis remains unclear. In this study, we identified 2-amino-5-chloro-N,3-dimethylbenzamide (CDDO), a compound known to inhibit heat shock protein 90 (HSP90), as an inhibitor of necroptosis that could also inhibit ferroptosis. We found that HSP90 defined a common regulatory nodal between necroptosis and ferroptosis. We showed that inhibition of HSP90 by CDDO blocked necroptosis by inhibiting the activation of RIPK1 kinase. Furthermore, we showed that the activation of ferroptosis by erastin increased the levels of lysosome-associated membrane protein 2a to promote chaperone-mediated autophagy (CMA), which, in turn, promoted the degradation of GPX4. Importantly, inhibition of CMA stabilized GPX4 and reduced ferroptosis. Our results suggest that activation of CMA is involved in the execution of ferroptosis.
Journal Article
Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer
by
Khan, Zia
,
Fontes, Magnus
,
Rouilly, Vincent
in
Antibodies, Monoclonal, Humanized - administration & dosage
,
Atopic dermatitis
,
Autoimmunity
2020
PD-1 and PD-L1 act to restrict T cell responses in cancer and contribute to self-tolerance. Consistent with this role, PD-1 checkpoint inhibitors have been associated with immune-related adverse events (irAEs), immune toxicities thought to be autoimmune in origin. Analyses of dermatological irAEs have identified an association with improved overall survival (OS) following anti–PD-(L)1 therapy, but the factors that contribute to this relationship are poorly understood. We collected germline whole-genome sequencing data from IMvigor211, a recent phase 3 randomized controlled trial comparing atezolizumab (anti–PD-L1) monotherapy to chemotherapy in bladder cancer. We found that high vitiligo, high psoriasis, and low atopic dermatitis polygenic risk scores (PRSs) were associated with longer OS under anti–PD-L1 monotherapy as compared to chemotherapy, reflecting the Th17 polarization of these diseases. PRSs were not correlated with tumor mutation burden, PD-L1 immunohistochemistry, nor T-effector gene signatures. Shared genetic factors impact risk for dermatological autoimmunity and anti–PD-L1 monotherapy in bladder cancer.
Journal Article
Weight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study
2008
Objective:
Lifestyle and genetic factors interact in the development of obesity and the metabolic syndrome. The molecular mechanisms underlying the beneficial dietary modifications are, however, unclear. We aimed to examine the effect of the long-term moderate weight reduction on gene expression in adipose tissue (AT) and to identify genes and gene clusters responsive to treatment and thereby likely contributing to the development of the metabolic syndrome.
Design:
Randomized controlled and individualized weight reduction intervention.
Subjects:
Forty-six subjects with impaired fasting glycemia or impaired glucose tolerance and features of metabolic syndrome, aged 60±7 years were randomized either to a weight reduction (WR) (
n
=28) or a control (
n
=18) group lasting for 33 weeks.
Measurements:
Oral and intravenous glucose tolerance tests and subcutaneous AT biopsies were performed before and after the intervention. Gene expression of AT was studied using microarray technology in subgroups of WR (with weight reduction ⩾5%,
n
=9) and control group (
n
=10). The results were confirmed using quantitative PCR.
Results:
In the WR group, glucose metabolism improved. Moreover, an inverse correlation between the change in
S
I
and the change in body weight was found (
r
=−0.44,
P
=0.026). Downregulation of gene expression (
P
<0.01) involving gene ontology groups of extracellular matrix and cell death was seen. Such changes did not occur in the control group. The tenomodulin-gene was one of the most downregulated genes (−39±16%,
P
<0.0001). Moreover, its expression correlated with insulin sensitivity (
r
=−0.34,
P
=0.005) before the intervention and with body adiposity both before (
r
=0.42,
P
=0.007) and after (
r
=0.30,
P
=0.056) the intervention.
Conclusion:
Genes regulating the extracellular matrix and cell death showed a strong downregulation after long-term weight reduction. This likely reflects a new stable state at the molecular level in AT. Further studies are warranted to elucidate the mechanisms of these genetic factors.
Journal Article
Damage-associated molecular patterns in cancer: a double-edged sword
2016
Damage-associated molecular patterns (DAMPs) are released in response to cell death and stress, and are potent triggers of sterile inflammation. Recent evidence suggests that DAMPs may also have a key role in the development of cancer, as well as in the host response to cytotoxic anti-tumor therapy. As such, DAMPs may exert protective functions by alerting the immune system to the presence of dying tumor cells, thereby triggering immunogenic tumor cell death. On the other hand, cell death and release of DAMPs may also trigger chronic inflammation and, thereby promote the development or progression of tumors. Here, we will review the contribution of candidate DAMPs and their receptors, and discuss the evidence for DAMPs as tumor-promoting and anti-tumor effectors, as well as unsolved questions such as DAMP release from non-tumor cells as well as the existence of tumor-specific DAMPs.
Journal Article
BAP1 links metabolic regulation of ferroptosis to tumour suppression
2018
The roles and regulatory mechanisms of ferroptosis (a non-apoptotic form of cell death) in cancer remain unclear. The tumour suppressor BRCA1-associated protein 1 (
BAP1
) encodes a nuclear deubiquitinating enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here, integrated transcriptomic, epigenomic and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter
SLC7A11
as a key BAP1 target gene in human cancers. Functional studies reveal that BAP1 decreases H2Aub occupancy on the
SLC7A11
promoter and represses
SLC7A11
expression in a deubiquitinating-dependent manner, and that BAP1 inhibits cystine uptake by repressing
SLC7A11
expression, leading to elevated lipid peroxidation and ferroptosis. Furthermore, we show that BAP1 inhibits tumour development partly through SLC7A11 and ferroptosis, and that cancer-associated
BAP1
mutants lose their abilities to repress
SLC7A11
and to promote ferroptosis. Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumour suppression.
Zhang et al. show that BAP1 suppresses SLC7A11 expression and cystine uptake, thereby promoting ferroptosis and inhibiting tumour growth.
Journal Article
A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors
by
Kovacova, Viera
,
von Born, Patrick
,
Stuttmann, Johannes
in
Arabidopsis - genetics
,
Arabidopsis - immunology
,
Arabidopsis - microbiology
2019
Plant nucleotide binding/leucine-rich repeat (NLR) immune receptors are activated by pathogen effectors to trigger host defenses and cell death. Toll-interleukin 1 receptor domain NLRs (TNLs) converge on the ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) family of lipase-like proteins for all resistance outputs. In Arabidopsis (Arabidopsis thaliana) TNL-mediated immunity, AtEDS1 heterodimers with PHYTOALEXIN DEFICIENT4 (AtPAD4) transcriptionally induced basal defenses. AtEDS1 uses the same surface to interact with PAD4-related SENESCENCE-ASSOCIATED GENE101 (AtSAG101), but the role of AtEDS1-AtSAG101 heterodimers remains unclear. We show that AtEDS1-AtSAG101 functions together with N REQUIRED GENE1 (AtNRG1) coiled-coil domain helper NLRs as a coevolved TNL cell death-signaling module. AtEDS1-AtSAG101-AtNRG1 cell death activity is transferable to the Solanaceous species Nicotiana benthamiana and cannot be substituted by AtEDS1-AtPAD4 with AtNRG1 or AtEDS1-AtSAG101 with endogenous NbNRG1. Analysis of EDS1-family evolutionary rate variation and heterodimer structure-guided phenotyping of AtEDS1 variants and AtPAD4-AtSAG101 chimeras identify closely aligned -helical coil surfaces in the AtEDS1-AtSAG101 partner C-terminal domains that are necessary for reconstituted TNL cell death signaling. Our data suggest that TNL-triggered cell death and pathogen growth restriction are determined by distinctive features of EDS1-SAG101 and EDS1-PAD4 complexes and that these signaling machineries coevolved with other components within plant species or clades to regulate downstream pathways in TNL immunity.
Journal Article
DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome
2019
The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer
1
–
5
. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1β and IL-18 and drives cell fate towards pyroptosis—a form of programmed inflammatory cell death that has major roles in health and disease
6
–
12
. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.
The RNA helicase DDX3X has a critical role in regulating both the induction of stress granules and the activation of the NLRP3 inflammasome in cells under stress conditions.
Journal Article
Autophagy-dependent cell death
2019
Autophagy-dependent cell death can be defined as cell demise that has a strict requirement of autophagy. Although autophagy often accompanies cell death following many toxic insults, the requirement of autophagic machinery for cell death execution, as established through specific genetic or chemical inhibition of the process, is highly contextual. During animal development, perhaps the best validated model of autophagy-dependent cell death is the degradation of the larval midgut during larval–pupal metamorphosis, where a number of key autophagy genes are required for the removal of the tissues. Surprisingly though, even in the midgut, not all of the ‘canonical’ autophagic machinery appears to be required. In other organisms and cancer cells many variations of autophagy-dependent cell death are apparent, pointing to the lack of a unifying cell death pathway. It is thus possible that components of the autophagy machinery are selectively utilised or repurposed for this type of cell death. In this review, we discuss examples of cell death that utilise autophagy machinery (or part thereof), the current knowledge of the complexity of autophagy-dependent cellular demise and the potential mechanisms and regulatory pathways involved in such cell death.
Journal Article