Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
60,271 result(s) for "Chemokines"
Sort by:
Suppressive Effect of Insulin Infusion on Chemokines and Chemokine Receptors
In view of the previously described anti-inflammatory effects of insulin, we investigated the potential suppressive effect of insulin on plasma concentrations and expression of the chemokines, monocyte chemoattractant protein-1 (MCP-1) and regulated on activation normal T-cell expressed and secreted (RANTES) and their receptors, chemokine receptor (CCR)-2 and CCR-5, in mononuclear cells (MNCs). We also investigated the effect of insulin on other chemokines. Ten obese type 2 diabetic patients were infused with insulin (2 units/h with 100 ml of 5% dextrose/h) for 4 h. Another 8 and 6 type 2 diabetic patients were infused with 100 ml of 5% dextrose/h or saline for 4 h, respectively, and served as control subjects. Blood samples were obtained at 0, 2, 4, and 6 h. Insulin infusion significantly suppressed the plasma concentrations of MCP-1, eotaxin, and RANTES and the expression of RANTES, macrophage inflammatory protein (MIP)-1beta, CCR-2, and CCR-5 in MNCs at 2 and 4 h. Dextrose and saline infusions did not alter these indexes. A low-dose infusion of insulin suppresses the plasma concentration of key chemokines, MCP-1, and RANTES, and the expression of their respective receptors, CCR-2 and CCR-5, in MNCs. Insulin also suppresses the expression of RANTES and MIP-1beta in MNCs. These actions probably contribute to the comprehensive anti-inflammatory effect of insulin.
Genital Inflammation and the Risk of HIV Acquisition in Women
Background. Women in Africa, especially young women, have very high human immunodeficiency virus (HIV) incidence rates that cannot be fully explained by behavioral risks. We investigated whether genital inflammation influenced HIV acquisition in this group. Methods. Twelve selected cytokines, including 9 inflammatory cytokines and chemokines (interleukin [IL]-1α, IL-1β, IL-6, tumor necrosis factor-α, IL-8, interferon-γ inducible protein-10 [IP-10], monocyte chemoattractant protein-1, macrophage inflammatory protein [MIP]-1α, MIP-1β), hematopoietic IL-7, and granulocyte macrophage colony-stimulating factor, and regulatory IL-10 were measured prior to HIV infection in cervicovaginal lavages from 58 HIV seroconverters and 58 matched uninfected controls and in plasma from a subset of 107 of these women from the Centre for the AIDS Programme of Research in South Africa 004 tenofovir gel trial. Results. HIV seroconversion was associated with raised genital inflammatory cytokines (including chemokines MIP-1α, MIP-1β, and IP-10). The risk of HIV acquisition was significantly higher in women with evidence of genital inflammation, defined by at least 5 of 9 inflammatory cytokines being raised (odds ratio, 3.2; 95% confidence interval, 1.3–7.9; P = .014). Genital cytokine concentrations were persistently raised (for about 1 year before infection), with no readily identifiable cause despite extensive investigation of several potential factors, including sexually transmitted infections and systemic cytokines. Conclusions. Elevated genital concentrations of HIV target cell–recruiting chemokines and a genital inflammatory profile contributes to the high risk of HIV acquisition in these African women.
Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages
Macrophages are dynamic cells that mature under the influence of signals from the local microenvironment into either classically (M1) or alternatively (M2) activated macrophages with specific functional and phenotypic properties. Although the phenotypic identification of M1 and M2 macrophages is well established in mice, this is less clear for human macrophages. In addition, the persistence and reversibility of polarized human phenotypes is not well established. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1 and M2 phenotypes using LPS/IFN-γ and IL-4/IL-13, respectively. M1 and M2 were identified as CD64(+)CD80(+) and CD11b(+)CD209(+), respectively, by flow cytometry. Polarized M1 cells secreted IP-10, IFN-γ, IL-8, TNF-α, IL-1β, and RANTES, whereas M2 cells secreted IL-13, CCL17, and CCL18. Functionally, M2 cells were highly endocytic. In cytokine-deficient medium, the polarized macrophages reverted back to the M0 state within 12 days. If previously polarized macrophages were given the alternative polarizing stimulus after 6 days of resting in cytokine-deficient medium, a switch in polarization was seen (i.e., M1 macrophages switched to M2 and expressed CD11b(+)CD209(+) and vice versa). In summary, we report phenotypic identification of human M1 and M2 macrophages, their functional characteristics, and their ability to be reprogrammed given the appropriate stimuli.
ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFκB activation
Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H 2 O 2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H 2 O 2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H 2 O 2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H 2 O 2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.
Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors
In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment. This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes. Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient immune escape mechanism of solid cancers.The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune intervention in cancer.
Mechanisms of Regulation of the Chemokine-Receptor Network
The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.
Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
Treating ovarian cancer in mouse models with inhibitors for the epigenetic regulators EZH2 and DNMT1 increases the expression of the inflammatory chemokines CXCL9 and CXCL10, resulting in enhanced tumour infiltration by effector T cells, and slowed tumour progression. Epigenetic reprograming and cancer immunotherapy The therapeutic response of cancer patients to immunotherapy can be variable. Weiping Zou and colleagues hypothesize that immunoprotective signature genes might be epigenetically silenced in cancer, thereby promoting cancer progression and blunting the clinical response to immunotherapy. To test this idea the authors treated ovarian cancer in mouse models with agents that inhibit the epigenetic regulators EZH2 and DNMT1. They find that inhibition of EZH2 and DNMT1 increases the expression of the inflammatory chemokines CXCL9/10, resulting in enhanced tumour infiltration by effector T cells, and slower tumour progression. Epigenetic silencing including histone modifications and DNA methylation is an important tumorigenic mechanism 1 . However, its role in cancer immunopathology and immunotherapy is poorly understood. Using human ovarian cancers as our model, here we show that enhancer of zeste homologue 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27me3) and DNA methyltransferase 1 (DNMT1)-mediated DNA methylation repress the tumour production of T helper 1 (T H 1)-type chemokines CXCL9 and CXCL10, and subsequently determine effector T-cell trafficking to the tumour microenvironment. Treatment with epigenetic modulators removes the repression and increases effector T-cell tumour infiltration, slows down tumour progression, and improves the therapeutic efficacy of programmed death-ligand 1 (PD-L1; also known as B7-H1) checkpoint blockade 2 , 3 , 4 and adoptive T-cell transfusion 5 in tumour-bearing mice. Moreover, tumour EZH2 and DNMT1 are negatively associated with tumour-infiltrating CD8 + T cells and patient outcome. Thus, epigenetic silencing of T H 1-type chemokines is a novel immune-evasion mechanism of tumours. Selective epigenetic reprogramming alters the T-cell landscape 6 in cancer and may enhance the clinical efficacy of cancer therapy.
Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy
The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3) were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT) to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15) and myxovirus-resistance gene 1 (MX1) expression in these tissues. Cyclooxygenase 2 (COX2) expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR) expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.
Changes in eotaxin-3 and pulmonary and activationregulated chemokine levels in patients after dupilumab treatment: a systematic review and meta-analysis
Introduction:Dupilumab is approved for a variety of type 2 inflammatory diseases. Changes in chemokine levels during treatment require further analysis.Aim:We evaluated changes in eotaxin-3 and PARC levels after dupilumab treatment through a meta-analysis, aiming to provide more comprehensive results.Material and methods:Databases were searched to select eligible publications. The study quality was assessed after inclusion. The standardized mean difference (SMD) was used for evaluation.Results:Four studies were included. Eotaxin-3 levels were not seen significantly decreased at weeks 1 and 12, with SMD = –0.39 (95% CI: –1.78, 0.99) and –2.60 (95% CI: –5.77, 0.57), respectively (p > 0.05). Eotaxin-3 levels decreased significantly at weeks 2, 4, 8, 16, 24, 36, and 52, with SMD = –0.94 (95% CI: –1.61, –0.27); –1.17 (95% CI: –1.49, –0.84); –1.20 (95% CI: –1.52, –0.88); –1.31 (95% CI: –1.83, –0.79); –4.57 (95% CI: –6.90, –2.33); –5.28 (95% CI: –5.52, –5.04); and –4.03 (95% CI: –4.22, –3.85) (p < 0.05), respectively. PARC levels decreased significantly at weeks 4, 8, 12, and 16, with SMD = –1.08 (95% CI: –1.59, –0.58); –1.17 (95% CI: –1.68, –0.66); –1.11 (95% CI: –1.61, –0.60); and –1.15 (95% CI: –1.66, –0.64) (p < 0.05), respectively.Conclusions:Eotaxin-3 and PARC levels can be significantly reduced in patients treated with dupilumab.
Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy
Chemokines are small secreted proteins that orchestrate migration and positioning of immune cells within the tissues. Chemokines are essential for the function of the immune system. Accumulating evidence suggest that chemokines play important roles in tumor microenvironment. In this review we discuss an association of chemokine expression and activity within the tumor microenvironment with cancer outcome. We summarize regulation of immune cell recruitment into the tumor by chemokine-chemokine receptor interactions and describe evidence implicating chemokines in promotion of the \"inflamed\" immune-cell enriched tumor microenvironment. We review both tumor-promoting function of chemokines, such as regulation of tumor metastasis, and beneficial chemokine roles, including stimulation of anti-tumor immunity and response to immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting chemokines or induce/deliver beneficial chemokines within the tumor focusing on pre-clinical studies and clinical trials going forward. The goal of this review is to provide insight into comprehensive role of chemokines and their receptors in tumor pathobiology and treatment.