Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
25,448 result(s) for "Chemokines - metabolism"
Sort by:
Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy
Post-translational modification of chemokines such as CXCL10 can regulate their activity. Albert and colleagues demonstrate that the endogenous peptidase DPP4 cleaves CXCL10 and thereby interferes with T cell recruitment to tumors. The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.
Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron–glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.
CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis
ObjectivesWhile various monocyte chemokine systems are increased in expression in osteoarthritis (OA), the hierarchy of chemokines and chemokine receptors in mediating monocyte/macrophage recruitment to the OA joint remains poorly defined. Here, we investigated the relative contributions of the CCL2/CCR2 versus CCL5/CCR5 chemokine axes in OA pathogenesis.MethodsCcl2-, Ccr2-, Ccl5- and Ccr5-deficient and control mice were subjected to destabilisation of medial meniscus surgery to induce OA. The pharmacological utility of blocking CCL2/CCR2 signalling in mouse OA was investigated using bindarit, a CCL2 synthesis inhibitor, and RS-504393, a CCR2 antagonist. Levels of monocyte chemoattractants in synovial tissues and fluids from patients with joint injuries without OA and those with established OA were investigated using a combination of microarray analyses, multiplexed cytokine assays and immunostains.ResultsMice lacking CCL2 or CCR2, but not CCL5 or CCR5, were protected against OA with a concomitant reduction in local monocyte/macrophage numbers in their joints. In synovial fluids from patients with OA, levels of CCR2 ligands (CCL2, CCL7 and CCL8) but not CCR5 ligands (CCL3, CCL4 and CCL5) were elevated. We found that CCR2+ cells are abundant in human OA synovium and that CCR2+ macrophages line, invade and are associated with the erosion of OA cartilage. Further, blockade of CCL2/CCR2 signalling markedly attenuated macrophage accumulation, synovitis and cartilage damage in mouse OA.ConclusionsOur findings demonstrate that monocytes recruited via CCL2/CCR2, rather than by CCL5/CCR5, propagate inflammation and tissue damage in OA. Selective targeting of the CCL2/CCR2 system represents a promising therapeutic approach for OA.
ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFκB activation
Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H 2 O 2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H 2 O 2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H 2 O 2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H 2 O 2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.
The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis
Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (p<0.05) and chemokines CCL2, CXCL10 and CXCL13 (p<0.05). No overall changes were observed in synovial inflammation score or the presence of T cells, B cells or macrophages. Changes in synovial phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3 strongly correlated with 4-month clinical responses (p<0.002). Tofacitinib significantly decreased plasma CXCL10 (p<0.005) at Day 28 compared with placebo. Tofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. NCT00976599.
Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy
Chemokines are small secreted proteins that orchestrate migration and positioning of immune cells within the tissues. Chemokines are essential for the function of the immune system. Accumulating evidence suggest that chemokines play important roles in tumor microenvironment. In this review we discuss an association of chemokine expression and activity within the tumor microenvironment with cancer outcome. We summarize regulation of immune cell recruitment into the tumor by chemokine-chemokine receptor interactions and describe evidence implicating chemokines in promotion of the \"inflamed\" immune-cell enriched tumor microenvironment. We review both tumor-promoting function of chemokines, such as regulation of tumor metastasis, and beneficial chemokine roles, including stimulation of anti-tumor immunity and response to immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting chemokines or induce/deliver beneficial chemokines within the tumor focusing on pre-clinical studies and clinical trials going forward. The goal of this review is to provide insight into comprehensive role of chemokines and their receptors in tumor pathobiology and treatment.
Nucleic acid-induced chemokine expression in keratinocytes: Implications for skin inflammation
Chemokines play an important role in the pathogenesis of skin diseases, such as psoriasis, atopic dermatitis, vitiligo, and alopecia areata. Recently literature data supports the theory that alternatively spliced isoforms of these molecules may serve as potential regulators in these diseases. Since self-derived nucleic acids are main culprits in chronic skin diseases we compared the effects of synthetic RNA- and DNA-induced inflammation on the expression levels of chemokines in human keratinocytes. We found that cytoplasmic nucleic acids are potent inducers of monocyte chemoattractant protein-1 (CCL2), interferon gamma inducible protein-10 (CXCL10) and fractalkine (CX3CL1) mRNA-expression, mainly through NF-κB activation, but the pattern recognition receptors responsible for inducing this activation are still unknown. Alternative splicing of these chemokines in keratinocytes was not detected, suggesting other regulatory mechanisms for chemokine activity.
The Clinicopathological Significance of the CXCR2 Ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer
We have previously reported that chemokine (C-X-C motif) receptor 2 (CXCR2) signaling was associated with the malignant progression of gastric cancer (GC). We thus examined the clinicopathological significance of CXCR2 ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8, in GC. The expression of CXCR2 ligands in 590 GC cases was investigated by immunohistochemistry. The expression was as follows: CXCL1, 46.2% (257/557); CXCL2, 20.7% (122/590); CXCL3, 17.1% (101/589); CXCL5/CXCL6, 2.9% (17/589); CXCL7, 36.4% (215/590); and CXCL8 1.7% (10/585) of the cases. High invasion depth was correlated with CXCL1 expression. Lymph node metastasis and peritoneal cytology positivity were correlated with high expression of CXCL1 and CXCL7. The prognoses of the CXCL1-positive patients were significantly poorer than those of the CXCL1-negative patients (p<0.001). Among the CXCR2 ligands, CXCL7 and especially CXCL1, might play an important role in the malignant progression of GC via CXCR2 signaling.
Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors
In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment. This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes. Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient immune escape mechanism of solid cancers.The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune intervention in cancer.
Characteristics of Proinflammatory Cytokines and Chemokines in Airways of Asthmatics
Increased proinflammatory cytokines and chemokines might contribute to infiltration of inflammatory cells and remodeling in airways of asthma. Although these molecules may be associated with asthma, there is lack of systemic evidence showing which and how important these events are in the disease. We aimed to analyze the concentrations of these molecules in the airways and relationships with disease severity and with airway infiltration of inflammatory cells in a large cohort of asthmatics (n = 70, including 37 mild and 33 moderate/severe asthmatics) compared with controls (n = 30). Meso scale discovery system and commercial ELISA kits were used to measure the concentrations of proinflammatory cytokines interleukin (IL)-1β; tumor necrosis factor-alpha (TNF-α); IL-6; and IL-17 and CC and CXC chemokines CCL2, CCL4, CCL11, CCL13, CCL17, CCL22, and CCL26 and CXCL8, CXCL9, CXCL10, and CXCL11 in bronchoalveolar lavage fluid of asthmatics and controls. The concentrations of IL-1, TNF-α, IL-6, CXCL8 and CXCL10, and CCL4, CCL11, CCL17, and CCL22 were significantly elevated in asthmatics compared with controls (P < 0.05). The concentrations of TNF-α and CXCL8, but not others, were negatively correlated with severity of disease (lung function forced expiratory volume in 1 s) (TNF-α vs. total: r = -0.359, P= 0.002 vs. moderate/severe: r= -0.541, P= 0.001; CXCL8 vs. total: r = -0.327, P= 0.006 vs. moderate/severe: r = -0.625, P= 0.0001, respectively). In addition, concentrations of these two molecules were also correlated with the absolute numbers of infiltrating eosinophils and neutrophils in asthmatic airways. Increased concentrations of TNF-α and CXCL8 are associated with pathogenesis of asthma. Targeting these molecules might provide an alternative therapeutic for this disease.