Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,232
result(s) for
"Chemotaxis - genetics"
Sort by:
Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor
2021
Reversible switching of the bacterial flagellar motor between clockwise (CW) and counterclockwise (CCW) rotation is necessary for chemotaxis, which enables cells to swim towards favorable chemical habitats. Increase in the viscous resistance to the rotation of the motor (mechanical load) inhibits switching. However, cells must maintain homeostasis in switching to navigate within environments of different viscosities. The mechanism by which the cell maintains optimal chemotactic function under varying loads is not understood. Here, we show that the flagellar motor allosterically controls the binding affinity of the chemotaxis response regulator, CheY-P, to the flagellar switch complex by modulating the mechanical forces acting on the rotor. Mechanosensitive CheY-P binding compensates for the load-induced loss of switching by precisely adapting the switch response to a mechanical stimulus. The interplay between mechanical forces and CheY-P binding tunes the chemotactic function to match the load. This adaptive response of the chemotaxis output to mechanical stimuli resembles the proprioceptive feedback in the neuromuscular systems of insects and vertebrates.
It is unclear how bacterial cells adapt the reversible switching of flagellar motor rotation to environments of different viscosities. Here, Antani et al. show that flagellar mechanosensors allosterically control the motor’s binding affinity for the chemotaxis response regulator, CheY-P, to adapt flagellar switching over varying viscous loads.
Journal Article
Regulatory protein HilD stimulates Salmonella Typhimurium invasiveness by promoting smooth swimming via the methyl-accepting chemotaxis protein McpC
2021
In the enteric pathogen
Salmonella enterica
serovar Typhimurium, invasion and motility are coordinated by the master regulator HilD, which induces expression of the type III secretion system 1 (T3SS1) and motility genes. Methyl-accepting chemotaxis proteins (MCPs) detect specific ligands and control the direction of the flagellar motor, promoting tumbling and changes in direction (if a repellent is detected) or smooth swimming (in the presence of an attractant). Here, we show that HilD induces smooth swimming by upregulating an uncharacterized MCP (McpC), and this is important for invasion of epithelial cells. Remarkably, in vitro assays show that McpC can suppress tumbling and increase smooth swimming in the absence of exogenous ligands. Expression of
mcpC
is repressed by the universal regulator H-NS, which can be displaced by HilD. Our results highlight the importance of smooth swimming for
Salmonella
Typhimurium invasiveness and indicate that McpC can act via a ligand-independent mechanism when incorporated into the chemotactic receptor array.
Protein HilD of
Salmonella
Typhimurium coordinates motility and host cell invasion by upregulating flagellar genes and a secretion system. Here, Cooper et al. show that HilD also modulates swimming behaviour by upregulating a subunit of the chemotactic receptor array, and this is important for invasion of epithelial cells.
Journal Article
Neutrophil chemotaxis score and chemotaxis-related genes have the potential for clinical application to prognosticate the survival of patients with tumours
2024
As frontline cells, the precise recruitment of neutrophils is crucial for resolving inflammation and maintaining the homeostasis of the organism. Increasing evidence suggests the pivotal role of neutrophil chemotaxis in cancer progression and metastasis. Here, we collected clinical data and peripheral blood samples from patients with tumours to examine the alterations in the neutrophil quantity and chemotactic function using the Cell Chemotaxis Analysis Platform (CCAP). Transcriptome sequencing data of pan-cancer were obtained from The Cancer Genome Atlas (TCGA). Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, we selected a total of 29 genes from 155 neutrophil- and chemotaxis-related genes to construct the ChemoScore model. Meanwhile, nomogram-based comprehensive model was established for clinical application. Furthermore, immunofluorescence (IF) staining was employed to assess the relationship between the neutrophils infiltrating and the survival outcomes of tumours. In this observational study, the chemotactic function of neutrophils was notably diminished in patients. The establishment and validation of ChemoScore suggested neutrophil chemotaxis to be a risk factor in most tumours, whereby higher scores were associated with poorer survival outcomes and were correlated with various immune cells and malignant biological processes. Moreover, IF staining of tumour tissue substantiated the adverse correlation between neutrophil infiltration and the survival of patients with lung adenocarcinoma (
P
= 0.0002) and colon adenocarcinoma (
P
= 0.0472). Taken together, patients with tumours demonstrated a decrease in chemotactic function. ChemoScore potentially prognosticates the survival of patients with tumours. Neutrophil chemotaxis provides novel directions and theoretical foundations for anti-tumour treatment.
Journal Article
Mechanism of Signalling and Adaptation through the Rhodobacter sphaeroides Cytoplasmic Chemoreceptor Cluster
by
de Beyer, Jennifer A.
,
Fischer, Roman
,
Szöllössi, Andrea
in
Adaptation
,
Adaptation, Physiological - genetics
,
Bacterial Proteins - genetics
2019
Rhodobacter sphaeroides has two chemotaxis clusters, an Escherichia coli-like cluster with membrane-spanning chemoreceptors and a less-understood cytoplasmic cluster. The cytoplasmic CheA is split into CheA4, a kinase, and CheA3, a His-domain phosphorylated by CheA4 and a phosphatase domain, which together phosphorylate and dephosphorylate motor-stopping CheY6. In bacterial two-hybrid analysis, one major cytoplasmic chemoreceptor, TlpT, interacted with CheA4, while the other, TlpC, interacted with CheA3. Both clusters have associated adaptation proteins. Deleting their methyltransferases and methylesterases singly and together removed chemotaxis, but with opposite effects. The cytoplasmic cluster signal overrode the membrane cluster signal. Methylation and demethylation of specific chemoreceptor glutamates controls adaptation. Tandem mass spectroscopy and bioinformatics identified four putative sites on TlpT, three glutamates and a glutamine. Mutating each glutamate to alanine resulted in smooth swimming and loss of chemotaxis, unlike similar mutations in E. coli chemoreceptors. Cells with two mutated glutamates were more stoppy than wild-type and responded and adapted to attractant addition, not removal. Mutating all four sites amplified the effect. Cells were non-motile, began smooth swimming on attractant addition, and rapidly adapted back to non-motile before attractant removal. We propose that TlpT responds and adapts to the cell’s metabolic state, generating the steady-state concentration of motor-stopping CheY6~P. Membrane-cluster signalling produces a pulse of CheY3/CheY4~P that displaces CheY6~P and allows flagellar rotation and smooth swimming before both clusters adapt.
Journal Article
Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes
by
Chawla, Ajay
,
Yun, Karen
,
Nguyen, Khoa D
in
Animals
,
Antigens, Ly - immunology
,
ARNTL Transcription Factors - genetics
2013
Circadian clocks have evolved to regulate physiologic and behavioral rhythms in anticipation of changes in the environment. Although the molecular clock is present in innate immune cells, its role in monocyte homeostasis remains unknown. Here, we report that Ly6C(hi) inflammatory monocytes exhibit diurnal variation, which controls their trafficking to sites of inflammation. This cyclic pattern of trafficking confers protection against Listeria monocytogenes and is regulated by the repressive activity of the circadian gene Bmal1. Accordingly, myeloid cell-specific deletion of Bmal1 induces expression of monocyte-attracting chemokines and disrupts rhythmic cycling of Ly6C(hi) monocytes, predisposing mice to development of pathologies associated with acute and chronic inflammation. These findings have unveiled a critical role for BMAL1 in controlling the diurnal rhythms in Ly6C(hi) monocyte numbers.
Journal Article
Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress
2024
The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (
Glycine soja
), we demonstrate that highly conserved microbes dominated by
Pseudomonas
are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding
Pseudomonas
isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the
Pseudomonas
isolates. Moreover, exogenous application for xanthine to non-stressed plants results in
Pseudomonas
enrichment, reproducing the microbiota shift in salt-stressed root. Finally,
Pseudomonas
mutant analysis shows that the motility related gene
cheW
is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial
Pseudomonas
species by exudating key metabolites (i.e., purine) against salt stress.
Root-associated microbiota confers benefits to plant in responding to environmental stress. Here, the authors show that wild soybean secretes purines under salt stress, reshapes the microbiota and recruits Pseudomonas.
Journal Article
TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis
2016
Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial–mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both
in vivo
and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells.
Journal Article
Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis
by
Colin, Remy
,
Link, Hannes
,
Endres, Robert G.
in
Bacteria
,
Bacterial Proteins - genetics
,
Bacterial Proteins - metabolism
2020
Microorganisms possess diverse mechanisms to regulate investment into individual cellular processes according to their environment. How these regulatory strategies reflect the inherent trade-off between the benefit and cost of resource investment remains largely unknown, particularly for many cellular functions that are not immediately related to growth. Here, we investigate regulation of motility and chemotaxis, one of the most complex and costly bacterial behaviors, as a function of bacterial growth rate. We show with experiment and theory that in poor nutritional conditions, Escherichia coli increases its investment in motility in proportion to the reproductive fitness advantage provided by the ability to follow nutrient gradients. Since this growth-rate dependent regulation of motility genes occurs even when nutrient gradients are absent, we hypothesize that it reflects an anticipatory preallocation of cellular resources. Notably, relative fitness benefit of chemotaxis could be observed not only in the presence of imposed gradients of secondary nutrients but also in initially homogeneous bacterial cultures, suggesting that bacteria can generate local gradients of carbon sources and excreted metabolites, and subsequently use chemotaxis to enhance the utilization of these compounds. This interplay between metabolite excretion and their chemotaxis-dependent reutilization is likely to play an important general role in microbial communities.
Journal Article
Effect of Heterologous Expression of Chemotaxis Proteins from Genus Thermotoga on the Growth Kinetics of Escherichia coli Cells
by
Pokrovsky, V. S.
,
Samoilenko, V. A.
,
Pokrovskaya, M. V.
in
Aging
,
Bacteria - genetics
,
Bacterial Proteins - biosynthesis
2019
In the process of optimization of heterologous expression of thermostable chemotaxis proteins CheW and CheY as industrially useful polypeptides, their direct influence on the cell growth kinetics and morphology of
Escherichia coli
was observed. CheW and CheY of bacteria of the genus
Thermotoga
, being expressed in recombinant form in
E. coli
cells, are involved in the corresponding signal pathways of the mesophilic microorganisms. The effects of such involvement in the metabolism of “host” cells are extremely diverse: from rapid aging of the culture to elongation of the stationary growth phase. We also discuss the mechanisms of the influence of the heterologous chemotaxis proteins on cells, their positive and negative effects, as well as potential applications in industry and biomedicine.
Journal Article
Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps
2019
The human pathogen
Helicobacter pylori
displays extensive genetic diversity. While
H. pylori
is known to evolve during infection, population dynamics inside the gastric environment have not been extensively investigated. Here we obtained gastric biopsies from multiple stomach regions of 16
H. pylori
-infected adults, and analyze the genomes of 10
H. pylori
isolates from each biopsy. Phylogenetic analyses suggest location-specific evolution and bacterial migration between gastric regions. Migration is significantly more frequent between the corpus and the fundus than with the antrum, suggesting that physiological differences between antral and oxyntic mucosa contribute to spatial partitioning of
H. pylori
populations. Associations between
H. pylori
gene polymorphisms and stomach niches suggest that chemotaxis, regulatory functions and outer membrane proteins contribute to specific adaptation to the antral and oxyntic mucosa. Moreover, we show that antibiotics can induce severe population bottlenecks and likely play a role in shaping the population structure of
H. pylori
.
Helicobacter pylori
, a bacterial pathogen that infects human stomachs, has high genetic diversity across hosts. Here, Ailloud et al. reveal genetic structuring of
H. pylori
populations among different stomach regions of individual hosts and find signals of genetic associations with stomach region.
Journal Article