Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
118
result(s) for
"Chlorobi - genetics"
Sort by:
1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers
by
Javaux, E. J.
,
Gueneli, N.
,
McKenna, A. M.
in
"Earth, Atmospheric, and Planetary Sciences"
,
Algae
,
Aquatic Organisms - physiology
2018
The average cell size of marine phytoplankton is critical for the flow of energy and nutrients from the base of the food web to higher trophic levels. Thus, the evolutionary succession of primary producers through Earth’s history is important for our understanding of the radiation of modern protists ∼800 million years ago and the emergence of eumetazoan animals ∼200 million years later. Currently, it is difficult to establish connections between primary production and the proliferation of large and complex organisms because the mid-Proterozoic (∼1,800–800 million years ago) rock record is nearly devoid of recognizable phytoplankton fossils. We report the discovery of intact porphyrins, the molecular fossils of chlorophylls, from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania), 600 million years older than previous findings. The porphyrin nitrogen isotopes (δ15Npor = 5.6–10.2‰) are heavier than in younger sedimentary sequences, and the isotopic offset between sedimentary bulk nitrogen and porphyrins (εpor = −5.1 to −0.5‰) points to cyanobacteria as dominant primary producers. Based on fossil carotenoids, anoxygenic green (Chlorobiacea) and purple sulfur bacteria (Chromatiaceae) also contributed to photosynthate. The low εpor values, in combination with a lack of diagnostic eukaryotic steranes in the time interval of 1,600–1,000 million years ago, demonstrate that algae played an insignificant role in mid-Proterozoic oceans. The paucity of algae and the small cell size of bacterial phytoplankton may have curtailed the flow of energy to higher trophic levels, potentially contributing to a diminished evolutionary pace toward complex eukaryotic ecosystems and large and active organisms.
Journal Article
Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage
2016
Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the
Chlorobea
,
Ignavibacteria
and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class
Ignavibacteria
and the family
Rhodothermaceae
, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.
Journal Article
Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera
by
Tandon, Kshitij
,
Yamashiro, Hideyuki
,
Huang, Lina
in
Acidification
,
Algae
,
Anaerobic bacteria
2019
Background
Endolithic microbes in coral skeletons are known to be a nutrient source for the coral host. In addition to aerobic endolithic algae and
Cyanobacteria
, which are usually described in the various corals and form a green layer beneath coral tissues, the anaerobic photoautotrophic green sulfur bacteria (GSB)
Prosthecochloris
is dominant in the skeleton of
Isopora palifera
. However, due to inherent challenges in studying anaerobic microbes in coral skeleton, the reason for its niche preference and function are largely unknown.
Results
This study characterized a diverse and dynamic community of endolithic microbes shaped by the availability of light and oxygen. In addition, anaerobic bacteria isolated from the coral skeleton were cultured for the first time to experimentally clarify the role of these GSB. This characterization includes GSB’s abundance, genetic and genomic profiles, organelle structure, and specific metabolic functions and activity. Our results explain the advantages endolithic GSB receive from living in coral skeletons, the potential metabolic role of a clade of coral-associated
Prosthecochloris
(CAP) in the skeleton, and the nitrogen fixation ability of CAP.
Conclusion
We suggest that the endolithic microbial community in coral skeletons is diverse and dynamic and that light and oxygen are two crucial factors for shaping it. This study is the first to demonstrate the ability of nitrogen uptake by specific coral-associated endolithic bacteria and shed light on the role of endolithic bacteria in coral skeletons.
Journal Article
Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake
2018
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria drive major transformations in the sulfur cycle, and play vital roles in oxic--anoxic transitions in lakes and coastal waters. However, information on the succession of these sulfur bacteria in seasonally stratified lakes using molecular biological techniques is scarce. Here, we used 16S rRNA gene amplicon sequencing to study the spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in Lake Vechten. Oxygen and sulfate were mixed throughout the water column in winter and early spring. Meanwhile, SRB, green sulfur bacteria (GSB), purple sulfur bacteria (PSB), and colorless sulfur bacteria (CSB) exclusively inhabited the sediment. After the water column stratified, oxygen and nitrate concentrations decreased in the hypolimnion and various SRB species expanded into the anoxic hypolimnion. Consequently, sulfate was reduced to sulfide, stimulating the growth of PSB and GSB in the metalimnion and hypolimnion during summer stratification. When hypoxia spread throughout the water column during fall turnover, SRB and GSB vanished from the water column, whereas CSB (mainly Arcobacter) and PSB (Lamprocystis) became dominant and oxidized the accumulated sulfide under micro-aerobic conditions. Our results support the view that, once ecosystems have become anoxic and sulfidic, a large oxygen influx is needed to overcome the anaerobic sulfur cycle and bring the ecosystems back into their oxic state.
Journal Article
Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments
by
Kappler, Andreas
,
Posth, Nicole R.
,
Hegler, Florian
in
Animal, plant and microbial ecology
,
Bacteria
,
Bacterial Physiological Phenomena
2008
Phototrophic iron(II) [Fe(II)]-oxidizing bacteria are present in modern environments and evidence suggests that this metabolism was present already on early earth. We determined Fe(II) oxidation rates depending on pH, temperature, light intensity, and Fe(II) concentration for three phylogenetically different phototrophic Fe(II)-oxidizing strains (purple nonsulfur bacterium Rhodobacter ferrooxidans sp. strain SW2, purple sulfur bacterium Thiodictyon sp. strain F4, and green sulfur bacterium Chlorobium ferrooxidans strain KoFox). While we found the overall highest Fe(II) oxidation rates with strain F4 (4.5 mmol L⁻¹ day⁻¹, 800 lux, 20 °C), the lowest light saturation values [at which maximum Fe(II) oxidation occurred] were determined for strain KoFox with light saturation already below 50 lux. The oxidation rate per cell was determined for R. ferrooxidans strain SW2 to be 32 pmol Fe(II) h⁻¹ per cell. No significant toxic effect of Fe(II) was observed at Fe(II) concentrations of up to 30 mM. All three strains are mesophiles with upper temperature limits of c. 30 °C. The main pigments were identified to be spheroidene, spheroidenone, OH-spheroidenone (SW2), rhodopinal (F4), and chlorobactene (KoFox). This study will improve our ecophysiological understanding of iron cycling in modern environments and will help to evaluate whether phototrophic iron oxidizers may have contributed to the formation of Fe(III) on early earth.
Journal Article
Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex
by
Saer, Rafael G.
,
Niedzwiedzki, Dariusz M.
,
Blankenship, Robert E.
in
Aerobic conditions
,
Aerobiosis
,
Amino Acid Sequence
2016
Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna–Matthews–Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum. Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems.
Journal Article
Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea
2012
Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.
Journal Article
Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential
by
Kühl, Michael
,
Grossman, Arthur R
,
Ward, David M
in
631/114/739
,
631/158/853
,
631/326/2565/2142
2011
Phototrophic microbial mat communities from 60 °C and 65 °C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic populations and permitted the discovery and characterization of undescribed but predominant community members and their physiological potential. Linkage of phylogenetic marker genes and functional genes showed novel chlorophototrophic bacteria belonging to uncharacterized lineages within the order Chlorobiales and within the Kingdom Chloroflexi. The latter is the first chlorophototrophic member of Kingdom Chloroflexi that lies outside the monophyletic group of chlorophototrophs of the Order Chloroflexales. Direct comparison of unassembled metagenomic sequences to genomes of representative isolates showed extensive genetic diversity, genomic rearrangements and novel physiological potential in native populations as compared with genomic references.
Synechococcus
spp. metagenomic sequences showed a high degree of synteny with the reference genomes of
Synechococcus
spp. strains A and B′, but synteny declined with decreasing sequence relatedness to these references. There was evidence of horizontal gene transfer among native populations, but the frequency of these events was inversely proportional to phylogenetic relatedness.
Journal Article
Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics
by
Lüdin, Samuel
,
Danza, Francesco
,
Roman, Samuele
in
Annual variations
,
Bacteria
,
Biogeochemistry
2018
The meromictic Lake Cadagno is characterized by a compact chemocline with high concentrations of anoxygenic phototrophic purple and green sulfur bacteria. However, a complete picture of the bacterial diversity, and in particular of effects of seasonality and compartmentalization is missing. To characterize bacterial communities and elucidate relationships between them and their surrounding environment high-throughput 16S rRNA gene pyrosequencing was conducted. Proteobacteria, Chlorobi, Verrucomicrobia, and Actinobacteria were the dominant groups in Lake Cadagno water column. Moreover, bacterial interaction within the chemocline and between oxic and anoxic lake compartments were investigated through fluorescence in situ hybridization (FISH) and flow cytometry (FCM). The different populations of purple sulfur bacteria (PSB) and green sulfur bacteria (GSB) in the chemocline indicate seasonal dynamics of phototrophic sulfur bacteria composition. Interestingly, an exceptional bloom of a cyanobacteria population in the oxic-anoxic transition zone affected the common spatial distribution of phototrophic sulfur bacteria with consequence on chemocline location and water column stability. Our study suggests that both bacterial interactions between different lake compartments and within the chemocline can be a dynamic process influencing the stratification structure of Lake Cadagno water column.
Journal Article
A seventh bacterial chlorophyll driving a large light-harvesting antenna
2012
The discovery of new chlorophyllous pigments would provide greater understanding of the mechanisms and evolution of photosynthesis. Bacteriochlorophyll
f
has never been observed in nature, although this name was proposed ~40 years ago based on structurally related compounds. We constructed a bacteriochlorophyll
f
–accumulating mutant of the green sulfur bacterium
Chlorobaculum limnaeum
, which originally produced bacteriochlorophyll
e
, by knocking out the
bchU
gene encoding C-20 methyltransferase based on natural transformation. This novel pigment self-aggregates in an
in vivo
light-harvesting antenna, the chlorosome and exhibits a Q
y
peak of 705 nm, more blue-shifted than any other chlorosome reported so far; the peak overlaps the maximum (~700 nm) of the solar photon flux spectrum. Bacteriochlorophyll
f
chlorosomes can transfer light energy from core aggregated pigments to another bacteriochlorophyll in the chlorosomal envelope across an energy gap of ~100 nm and is thus a promising material for development of new bioenergy applications.
Journal Article