Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
532
result(s) for
"Cholic Acids - metabolism"
Sort by:
Global chemical effects of the microbiome include new bile-acid conjugations
2020
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
–
9
. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units
10
), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches
11
,
12
–
13
to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry
14
. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.
Metabolomics data from germ-free and specific-pathogen-free mice reveal effects of the microbiome on host chemistry, identifying conjugations of bile acids that are also enriched in patients with inflammatory bowel disease or cystic fibrosis.
Journal Article
Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity
2023
Bile acids (BAs) as cholesterol-derived molecules play an essential role in some physiological processes such as nutrient absorption, glucose homeostasis and regulation of energy expenditure. They are synthesized in the liver as primary BAs such as cholic acid (CA), chenodeoxycholic acid (CDCA) and conjugated forms. A variety of secondary BAs such as deoxycholic acid (DCA) and lithocholic acid (LCA) and their derivatives is synthesized in the intestine through the involvement of various microorganisms. In addition to essential physiological functions, BAs and their metabolites are also involved in the differentiation and functions of innate and adaptive immune cells such as macrophages (Macs), dendritic cells (DCs), myeloid derived suppressive cells (MDSCs), regulatory T cells (Treg), Breg cells, T helper (Th)17 cells, CD4 Th1 and Th2 cells, CD8 cells, B cells and NKT cells. Dysregulation of the BAs and their metabolites also affects development of some diseases such as inflammatory bowel diseases. We here summarize recent advances in how BAs and their metabolites maintain gut and systemic homeostasis, including the metabolism of the BAs and their derivatives, the role of BAs and their metabolites in the differentiation and function of immune cells, and the effects of BAs and their metabolites on immune-associated disorders.
Journal Article
Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism
by
Wu, Hao
,
Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
,
Lundqvist, Annika
in
631/326
,
64/60
,
692/163
2024
Abstract Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.
Journal Article
Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid
2024
Background
Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (
bai
) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA).
Results
Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate
Clostridium scindens
is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of
bai
genes. CDCA upregulates expression of the
bai
genes but the expression is greater when CA is present. In contrast, the murine isolate
Extibacter muris
exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content
in vitro
. However,
E. muris
was found to 7-dehydroxylate
in vivo
.
Conclusions
The distinct expression responses amongst strains indicate that
bai
genes are regulated differently. CA promoted
bai
operon gene expression and the 7-dehydroxylating activity in
C. scindens
strains. Conversely, the
in vitro
activity of
E. muris
was promoted only after the addition of cecal content and the isolate did not alter
bai
gene expression in response to CA. The accessory gene
baiJ
was only upregulated in the
C. scindens
ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived
C. scindens
strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity
in vitro
resulting from the presence of CA and suggests distinct
bai
gene expression across bacterial species.
Journal Article
Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats
by
Maegawa, Kenta
,
Yokota, Atsushi
,
Ishizuka, Satoshi
in
Acclimation
,
Acclimatization
,
Accumulation
2022
Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0·5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic TAG levels (two-way ANOVA P < 0·001 for CA, P = 0·02 for Raf and P = 0·004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P < 0·001 for CA, P = 0·003 for Raf and P = 0·03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P = 0·001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic TAG concentration (R
2 = 0·55, P < 0·001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.
Journal Article
Stress can attenuate hepatic lipid accumulation via elevation of hepatic β-muricholic acid levels in mice with nonalcoholic steatohepatitis
2021
Stress can affect our body and is known to lead to some diseases. However, the influence on the development of nonalcohol fatty liver disease (NAFLD) remains unknown. This study demonstrated that chronic restraint stress attenuated hepatic lipid accumulation via elevation of hepatic β-muricholic acid (βMCA) levels in the development of nonalcoholic steatohepatitis (NASH) in mice. Serum cortisol and corticosterone levels, i.e., human and rodent stress markers, were correlated with serum bile acid levels in patients with NAFLD and methionine- and choline-deficient (MCD) diet-induced mice, respectively, suggesting that stress is related to bile acid (BA) homeostasis in NASH. In the mouse model, hepatic βMCA and cholic acid (CA) levels were increased after the stress challenge. Considering that a short stress enhanced hepatic CYP7A1 protein levels in normal mice and corticosterone increased CYP7A1 protein levels in primary mouse hepatocytes, the enhanced Cyp7a1 expression was postulated to be involved in the chronic stress-increased hepatic βMCA level. Interestingly, chronic stress decreased hepatic lipid levels in MCD-induced NASH mice. Furthermore, βMCA suppressed lipid accumulation in mouse primary hepatocytes exposed to palmitic acid/oleic acid, but CA did not. In addition, Cyp7a1 expression seemed to be related to lipid accumulation in hepatocytes. In conclusion, chronic stress can change hepatic lipid accumulation in NASH mice, disrupting BA homeostasis via induction of hepatic Cyp7a1 expression. This study discovered a new βMCA action in the liver, indicating the possibility that βMCA is available for NAFLD therapy.
Chronic stress can change hepatic lipid accumulation via elevation of hepatic β-muricholic acid levels in nonalcoholic steatohepatitis mice, disrupting bile acid homeostasis by induction of hepatic Cyp7a1 expression. This study describes a new role βMCA in the liver, indicating its potential usefulness for nonalcohol fatty liver disease therapy.
Journal Article
The clinical and biochemical effectiveness and safety of cholic acid treatment for bile acid synthesis defects: a systematic review
by
van Dussen, Laura
,
Vaz, Frédéric M.
,
Klouwer, Femke C. C.
in
Bile acid synthesis defects
,
Bile acids
,
Bile Acids and Salts - metabolism
2024
Background
Bile acid synthesis defects (BASDs) can be severely disabling involving the liver and nervous system, potentially due to elevated levels of toxic C
27
-bile acid intermediates. Cholic acid (CA) supplementation is hypothesized to decrease bile acid production, stimulate bile secretion and -flow, and slowing down disease progression. This systematic review assesses the clinical and biochemical effectiveness, and safety of CA in BASDs patients.
Methods
A systematic review of MEDLINE, Embase and clinical trial registries (ClinicalTrials.gov, ICTRP registry) using controlled MeSH- and Emtree terms.
Results
From 526 articles 70 publications were deemed eligible for inclusion based on title and abstract. 14 publications were included after full-text assessment comprising case reports and -series with 1–35 patients (162 patients in total) receiving 1 week to 16,5 years of CA treatment. All presented data on effectiveness, 8 studies also presented data on safety. The included population concerned patients with Zellweger spectrum disorders (
n
= 73), 3β-Hydroxy-Δ5-C
27
-steroid oxidoreductase deficiency (
n
= 62), cerebrotendinous xanthomatosis (
n
= 22), Δ4-3-oxosteroid 5β-reductase deficiency (
n
= 13), and α-methylacyl-CoA racemase deficiency (
n
= 3). Main outcomes concerned liver disease (12 studies), general physical examinations, biochemical outcomes, and safety (9 studies), and fat-soluble vitamin absorption (7 studies). The overall risk of bias score was considered to be critical (1 study), serious (4 studies), and moderate (9 studies). Major issues were missing data (10 studies), generalized data (8 studies), and no wash-out between treatments (4 studies).
Conclusion
More controlled studies are required as the available data is insufficient to draw definite conclusions on the effectiveness and safety of CA treatment in BASD patients. Establishing an independent international disease registry could better utilize existing real-world data.
Journal Article
Lactiplantibacillus plantarum PGB02 Improved Serum Cholesterol Profile by Tweaking Genes Involved in Cholesterol Homeostasis in Male Swiss Albino Mice
2023
The effect of Lactiplantibacillus plantarum PGB02 isolated from buttermilk on serum cholesterol profile of normal and hypercholesterolemic mice was evaluated. Further changes in the expression of mice genes were determined. The hypercholesterolemia was induced in experimental mice by feeding high cholesterol and fat diet. Serum cholesterol parameters, physical parameters, cholic acid excretion, and cholesterol metabolism related gene expression analysis was carried out. L. plantarum PGB02 efficiently reduced total cholesterol, triglycerides, and LDL-cholesterol and improved HDL-cholesterol in hypercholesterolaemic mice. Body weight was reduced and fecal cholic acid increased in probiotic treatment groups. Gene expression analysis revealed that L. plantarum PGB02 up-regulated the expression of LDL receptors, CYP7A1, ABCA1, ABCG5, ABCG8, and down-regulated the expression of FXR and NPC1L1 genes. Summarizing the mechanism, L. plantarum PGB02 improved hypercholesterolemia by increasing bile acid synthesis and excretion, reducing exogeneous cholesterol absorption from the intestine, and increased LDL clearance through upregulation of LDL-receptors. The present study has given insight into the mechanism of serum cholesterol reduction by bile salt hydrolase positive L. plantarum PGB02 in mice. L. plantarum PGB02 reduced the serum cholesterol level through increased bile acid synthesis and deconjugation and reduced absorption of cholesterol in the intestine. Isolate PGB02 shown cholesterol removal potential as good as statin.
Journal Article
Farnesoid X receptor and bile acids regulate vitamin A storage
2019
The nuclear receptor Farnesoid X Receptor (FXR) is activated by bile acids and controls multiple metabolic processes, including bile acid, lipid, carbohydrate, amino acid and energy metabolism. Vitamin A is needed for proper metabolic and immune control and requires bile acids for efficient intestinal absorption and storage in the liver. Here, we analyzed whether FXR regulates vitamin A metabolism. Compared to control animals, FXR-null mice showed strongly reduced (>90%) hepatic levels of retinol and retinyl palmitate and a significant reduction in lecithin retinol acyltransferase (LRAT), the enzyme responsible for hepatic vitamin A storage. Hepatic reintroduction of FXR in FXR-null mice induced vitamin A storage in the liver. Hepatic vitamin A levels were normal in intestine-specific FXR-null mice. Obeticholic acid (OCA, 3 weeks) treatment rapidly reduced (>60%) hepatic retinyl palmitate levels in mice, concurrent with strongly increased retinol levels (>5-fold). Similar, but milder effects were observed in cholic acid (12 weeks)-treated mice. OCA did not change hepatic LRAT protein levels, but strongly reduced all enzymes involved in hepatic retinyl ester hydrolysis, involving mostly post-transcriptional mechanisms. In conclusion, vitamin A metabolism in the mouse liver heavily depends on the FXR and FXR-targeted therapies may be prone to cause vitamin A-related pathologies.
Journal Article
Hepatic Vps33b deficiency aggravates cholic acid-induced cholestatic liver injury in male mice
2022
Vacuolar protein sorting 33B (VPS33B) is important for intracellular vesicular trafficking process and protein interactions, which is closely associated with the arthrogryposis, renal dysfunction, and cholestasis syndrome. Our previous study has shown a crucial role of
Vps33b
in regulating metabolisms of bile acids and lipids in hepatic
Vps33b
deficiency mice with normal chow, but it remains unknown whether VPS33B could contribute to cholestatic liver injury. In this study we investigated the effects of hepatic
Vps33b
deficiency on bile acid metabolism and liver function in intrahepatic cholestatic mice. Cholestasis was induced in
Vps33b
hepatic knockout and wild-type male mice by feeding 1% CA chow diet for 5 consecutive days. We showed that compared with the wild-type mice, hepatic
Vps33b
deficiency greatly exacerbated CA-induced cholestatic liver injury as shown in markedly increased serum ALT, AST, and ALP activities, serum levels of total bilirubin, and total bile acid, as well as severe hepatocytes necrosis and inflammatory infiltration. Target metabolomics analysis revealed that hepatic
Vps33b
deficiency caused abnormal profiles of bile acids in cholestasis mice, evidenced by the upregulation of conjugated bile acids in serum, liver, and bile. We further demonstrated that the metabolomics alternation was accompanied by gene expression changes in bile acid metabolizing enzymes and transporters including
Cyp3a11
,
Ugt1a1
,
Ntcp
,
Oatp1b1
,
Bsep
, and
Mrp2
. Overall, these results suggest a crucial role of hepatic
Vps33b
deficiency in exacerbating cholestasis and liver injury, which is associated with the altered metabolism of bile acids.
Journal Article