Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
92,514
result(s) for
"Communicable diseases"
Sort by:
Impacts of biodiversity on the emergence and transmission of infectious diseases
2010
Biodiversity is good for you
Changes in biodiversity have the potential to either increase or reduce the incidence of infectious disease in plants and animals — including humans — because they involve interactions among species. At a minimum, this requires a host and a pathogen; often many more species are involved, including additional hosts, vectors and other organisms with which these species interact. Felicia Keesing and colleagues review the evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. Despite important questions still to be answered, they conclude that the evidence that biodiversity exerts a protective effect on infectious diseases is sufficiently strong to include biodiversity protection as a strategy to improve health.
Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.
Journal Article
Modeling infectious disease dynamics in the complex landscape of global health
by
Andreasen, Viggo
,
Edmunds, W. John
,
Lessler, Justin
in
Animals
,
Antibiotic resistance
,
Arthropoda
2015
The spread of infectious diseases can be unpredictable. With the emergence of antibiotic resistance and worrying new viruses, and with ambitious plans for global eradication of polio and the elimination of malaria, the stakes have never been higher. Anticipation and measurement of the multiple factors involved in infectious disease can be greatly assisted by mathematical methods. In particular, modeling techniques can help to compensate for imperfect knowledge, gathered from large populations and under difficult prevailing circumstances. Heesterbeek et al. review the development of mathematical models used in epidemiology and how these can be harnessed to develop successful control strategies and inform public health policy. Science , this issue 10.1126/science.aaa4339 Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health.
Journal Article
Taking connected mobile-health diagnostics of infectious diseases to the field
by
McKendry, Rachel A.
,
Pillay, Deenan
,
Thomas, Michael R.
in
692/699/255
,
692/700/139
,
Cellular telephones
2019
Mobile health, or ‘mHealth’, is the application of mobile devices, their components and related technologies to healthcare. It is already improving patients’ access to treatment and advice. Now, in combination with internet-connected diagnostic devices, it offers novel ways to diagnose, track and control infectious diseases and to improve the efficiency of the health system. Here we examine the promise of these technologies and discuss the challenges in realizing their potential to increase patients’ access to testing, aid in their treatment and improve the capability of public health authorities to monitor outbreaks, implement response strategies and assess the impact of interventions across the world.
Combining mobile phone technologies with infectious disease diagnostics can increase patients’ access to testing and treatment and provide public health authorities with new ways to monitor and control outbreaks of infectious diseases.
Journal Article
Travel restrictions and lockdown during the COVID-19 pandemic—impact on notified infectious diseases in Switzerland
by
Steffen, Robert
,
Lautenschlager, Stephan
,
Fehr, Jan
in
Adult
,
Basic Reproduction Number - statistics & numerical data
,
Communicable Disease Control - organization & administration
2020
Based on notification data the impact of the COVID-19 lockdown in Switzerland was assessed. While the incidence of tick-borne encephalitis almost doubled as compared to 2016-2019, a reduction in all other infectious diseases was recorded. The lowest reduction rates (<25%) were noted for legionellosis, hepatitis A, chlamydia infection and gonorrhoea.
Journal Article
Clinical metagenomics
by
Miller, Steven A
,
Chiu, Charles Y
in
Antimicrobial resistance
,
Disease resistance
,
DNA sequencing
2019
Clinical metagenomic next-generation sequencing (mNGS), the comprehensive analysis of microbial and host genetic material (DNA and RNA) in samples from patients, is rapidly moving from research to clinical laboratories. This emerging approach is changing how physicians diagnose and treat infectious disease, with applications spanning a wide range of areas, including antimicrobial resistance, the microbiome, human host gene expression (transcriptomics) and oncology. Here, we focus on the challenges of implementing mNGS in the clinical laboratory and address potential solutions for maximizing its impact on patient care and public health.Clinical metagenomic next-generation sequencing (mNGS) is rapidly moving from bench to bedside. This Review discusses the clinical applications of mNGS, including infectious disease diagnostics, microbiome analyses, host response analyses and oncology applications. Moreover, the authors review the challenges that need to be overcome for mNGS to be successfully implemented in the clinical laboratory and propose solutions to maximize the benefits of clinical mNGS for patients.
Journal Article
Venezuela's humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region
by
Streicker, Daniel G
,
Hernandez-Pereira, Carlos E
,
Schwabl, Philipp
in
Animals
,
Chagas disease
,
Communicable Disease Control
2019
In the past 5–10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.
Journal Article
Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study
2021
The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030.
16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort.
We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52–88) deaths between 2000 and 2030, of which 37 million (30–48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36–58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52–66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93–150) deaths will be averted by vaccination, of which 58 million (39–76) are due to measles vaccination and 38 million (25–52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59–81) reduction in lifetime mortality in the 2019 birth cohort.
Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained.
Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.
Journal Article