Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,355 result(s) for "Complement (Immunology)"
Sort by:
Complement — tapping into new sites and effector systems
Recent studies have shown that complement activation is not confined to the serum but also occurs within cellular compartments. This has led to an emerging understanding that complement components can intersect diverse cellular metabolic and effector pathways. Here, the authors propose that the different locations of complement activation dictate its diverse functions. Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.
Novel mechanisms and functions of complement
Lambris and colleagues discuss new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis. Progress at the beginning of the 21st century transformed the perception of complement from that of a blood-based antimicrobial system to that of a global regulator of immunity and tissue homeostasis. More recent years have witnessed remarkable advances in structure–function insights and understanding of the mechanisms and locations of complement activation, which have added new layers of complexity to the biology of complement. This complexity is readily reflected by the multifaceted and contextual involvement of complement-driven networks in a wide range of inflammatory and neurodegenerative disorders and cancer. This Review provides an updated view of new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis.
Complement regulators and inhibitory proteins
Key Points The complement system maintains tissue homeostasis and integrity and forms the first central and immediately acting line of defence against invading infectious microorganisms. Complement activation generates toxic products, which need to be precisely targeted to the surface of invading microorganisms, and initiates effector functions with the goal of clearing tagged foreign cells as well as modified self cells, such as apoptotic particles. Complement activation is tightly regulated by multiple inhibitors that are distributed as integral membrane proteins, surface-bound regulators and soluble effectors in the body fluids and plasma. The central steps of complement activation are controlled by multiple regulators or inhibitors that have redundant activity. Dysregulation of the delicate balance of complement activation products and regulators results in autoimmune diseases. Some pathogenic microorganisms mimic the surface of host cells and can remain unrecognized by the host immune system. Complement is one of the first lines of innate immune defence in the body. As reviewed here, complement regulators have a key role in keeping the complement system in check, and dysregulation of complement activation can result in pathology. The complement system is important for cellular integrity and tissue homeostasis. Complement activation mediates the removal of microorganisms and the clearance of modified self cells, such as apoptotic cells. Complement regulators control the spontaneously activated complement cascade and any disturbances in this delicate balance can result in damage to tissues and in autoimmune disease. Therefore, insights into the mechanisms of complement regulation are crucial for understanding disease pathology and for enabling the development of diagnostic tools and therapies for complement-associated diseases.
Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b
Antigen binding by serum Ig-M (IgM) protects against microbial infections and helps to prevent autoimmunity, but causes life-threatening diseases when mistargeted. How antigen-bound IgM activates complement-immune responses remains unclear. We present cryoelectron tomography structures of IgM, C1, and C4b complexes formed on antigen-bearing lipid membranes by normal human serum at 4 °C. The IgM-C1-C4b complexes revealed C4b product release as the temperature-limiting step in complement activation. Both IgM hexamers and pentamers adopted hexagonal, dome-shaped structures with Fab pairs, dimerized by hinge domains, bound to surface antigens that support a platform of Fc regions. C1 binds IgM through widely spread C1q-collagen helices, with C1r proteases pointing outward and C1s bending downward and interacting with surface-attached C4b, which further interacts with the adjacent IgM-Fab₂ and globular C1q-recognition unit. Based on these data, we present mechanistic models for antibody-mediated, C1q-transmitted activation of C1 and for C4b deposition, while further conformational rearrangements are required to form C3 convertases.
Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells
Complement provides costimulatory signals to T cells. Medof and colleagues demonstrate that an absence of complement signaling in naive T cells generates an autoinductive loop to drive induced regulatory T cells. Signaling through the G protein–coupled receptors for the complement fragments C3a and C5a (C3aR and C5aR, respectively) by dendritic cells and CD4 + cells provides costimulatory and survival signals to effector T cells. Here we found that when signals from C3aR and C5aR were not transduced into CD4 + cells, signaling via the kinases PI(3)Kγ, Akt and mTOR ceased, activation of the kinase PKA increased, autoinductive signaling by transforming growth factor-β1 (TGF-β1) initiated and CD4 + T cells became Foxp3 + induced regulatory T cells (iT reg cells). Endogenous TGF-β1 suppressed signaling through C3aR and C5aR by preventing the production of C3a and C5a and upregulating C5L2, an alternative receptor for C5a. The absence of signaling via C3aR and C5aR resulted in lower expression of costimulatory molecules and interleukin 6 (IL-6) and more production of IL-10. The resulting iT reg cells exerted robust suppression, had enhanced stability and suppressed ongoing autoimmune disease. Antagonism of C3aR and C5aR can also induce functional human iT reg cells.
Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral–host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality—effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection. A combination of clinical and molecular analyses supports an association between disorders of immune complement or coagulation with poor outcome in patients with SARS-CoV-2 infection.
Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody
Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with \"Fc-unmodified\" chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 μg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) \"complement-inactive\" Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q-/- mice, when C5 function was blocked, or in C9-/- mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics.
Enhanced complement activation and MAC formation accelerates severe COVID-19
Emerging evidence indicates that activation of complement system leading to the formation of the membrane attack complex (MAC) plays a detrimental role in COVID-19. However, their pathogenic roles have never been experimentally investigated before. We used three knock out mice strains (1. C3 −/− ; 2. C7 −/− ; and 3. Cd59ab −/− ) to evaluate the role of complement in severe COVID-19 pathogenesis. C3 deficient mice lack a key common component of all three complement activation pathways and are unable to generate C3 and C5 convertases. C7 deficient mice lack a complement protein needed for MAC formation. Cd59ab deficient mice lack an important inhibitor of MAC formation. We also used anti-C5 antibody to block and evaluate the therapeutic potential of inhibiting MAC formation. We demonstrate that inhibition of complement activation (in C3 −/− ) and MAC formation (in C3 −/− . C7 −/− , and anti-C5 antibody) attenuates severe COVID-19; whereas enhancement of MAC formation ( Cd59ab −/− ) accelerates severe COVID-19. The degree of MAC but not C3 deposits in the lungs of C3 −/− , C7 −/− mice, and Cd59ab −/− mice as compared to their control mice is associated with the attenuation or acceleration of SARS-CoV-2-induced disease. Further, the lack of terminal complement activation for the formation of MAC in C7 deficient mice protects endothelial dysfunction, which is associated with the attenuation of diseases and pathologic changes. Our results demonstrated the causative effect of MAC in severe COVID-19 and indicate a potential avenue for modulating the complement system and MAC formation in the treatment of severe COVID-19.
CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease
Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg–Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease. CRIg is expressed on liver macrophages and binds Gram-positive bacteria to mediate phagocytosis, but it is not clear how its phagocytic functions contribute to liver homeostasis or disease. Here the authors report that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of alcoholic liver disease.
Autoimmune abnormalities of the alternative complement pathway in membranoproliferative glomerulonephritis and C3 glomerulopathy
Membranoproliferative glomerulonephritis (MPGN) is a rare chronic kidney disease associated with complement activation. Recent immunofluorescence-based classification distinguishes between immune complex (IC)-mediated MPGN, with glomerular IgG and C3 deposits, and C3 glomerulopathies (C3G), with predominant C3 deposits. Genetic and autoimmune abnormalities causing hyperactivation of the complement alternative pathway have been found as frequently in patients with immune complex-associated MPGN (IC-MPGN) as in those with C3G. In the last decade, there have been great advances in research into the autoimmune causes of IC-MPGN and C3G. The complement-activating autoantibodies called C3-nephritic factors (C3NeFs), which are present in 40–80% of patients, form a heterogeneous group of autoantibodies that stabilise the C3 convertase or the C5 convertase of the alternative pathway or both. A few patients, mainly with IC-MPGN, carry autoantibodies directed against the two components of the alternative pathway C3 convertase, factors B and C3b. Finally, autoantibodies against factor H, the main regulator of the alternative pathway, have been reported in a small proportion of patients with IC-MPGN or C3G. The identification of distinct pathogenetic patterns leading to kidney injury and of targets in the complement cascade may pave the way for tailored therapies for IC-MPGN and C3G, with specific complement inhibitors in the development pipeline.