Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
236 result(s) for "Compulsive Behavior - pathology"
Sort by:
New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity
Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, which are mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this article, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive, and addictive disorders and indicate new directions for research.
Neural Correlates of Sexual Cue Reactivity in Individuals with and without Compulsive Sexual Behaviours
Although compulsive sexual behaviour (CSB) has been conceptualized as a \"behavioural\" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.
Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories
The transition from adolescence to adulthood is a period when ongoing brain development coincides with a substantially increased risk of psychiatric disorders. The developmental brain changes accounting for this emergent psychiatric symptomatology remain obscure. Capitalizing on a unique longitudinal dataset that includes in vivo myelin-sensitive magnetization transfer (MT) MRI scans, we show that this developmental period is characterized by brain-wide growth in MT trajectories within both gray matter and adjacent juxtacortical white matter. In this healthy population, the expression of common developmental traits, namely compulsivity and impulsivity, is tied to a reduced growth of these MT trajectories in frontostriatal regions. This reduction is most marked in dorsomedial and dorsolateral prefrontal regions for compulsivity and in lateral and medial prefrontal regions for impulsivity. These findings highlight that psychiatric traits of compulsivity and impulsivity are linked to regionally specific reductions in myelin-related growth in late adolescent brain development.Ziegler, Hauser et al. report brain-wide, myelin-related microstructural growth from adolescence to adulthood and show that this longitudinal growth is reduced in the presence of compulsivity and impulsivity traits.
Dependence-induced increase of alcohol self-administration and compulsive drinking mediated by the histone methyltransferase PRDM2
Epigenetic processes have been implicated in the pathophysiology of alcohol dependence, but the specific molecular mechanisms mediating dependence-induced neuroadaptations remain largely unknown. Here, we found that a history of alcohol dependence persistently decreased the expression of Prdm2 , a histone methyltransferase that monomethylates histone 3 at the lysine 9 residue (H3K9me1), in the rat dorsomedial prefrontal cortex (dmPFC). Downregulation of Prdm2 was associated with decreased H3K9me1, supporting that changes in Prdm2 mRNA levels affected its activity. Chromatin immunoprecipitation followed by massively parallel DNA sequencing showed that genes involved in synaptic communication are epigenetically regulated by H3K9me1 in dependent rats. In non-dependent rats, viral-vector-mediated knockdown of Prdm2 in the dmPFC resulted in expression changes similar to those observed following a history of alcohol dependence. Prdm2 knockdown resulted in increased alcohol self-administration, increased aversion-resistant alcohol intake and enhanced stress-induced relapse to alcohol seeking, a phenocopy of postdependent rats. Collectively, these results identify a novel epigenetic mechanism that contributes to the development of alcohol-seeking behavior following a history of dependence.
Amelioration of obsessive-compulsive disorder in three mouse models treated with one epigenetic drug: unraveling the underlying mechanism
Mental health disorders are manifested in families, yet cannot be fully explained by classical Mendelian genetics. Changes in gene expression via epigenetics present a plausible mechanism. Anxiety often leads to avoidant behaviors which upon repetition may become habitual, maladaptive and resistant to extinction as observed in obsessive compulsive disorders (OCD). Psychophysical models of OCD propose that anxiety (amygdala) and habits (dorsolateral striatum, DLS) may be causally linked. The amygdala activates spiny projection neurons in the DLS. Repetitive amygdala terminal stimulation in the DLS elicits long term OCD-like behavior in mice associated with circuitry changes and gene methylation-mediated decrease in the activity of protein phosphatase 1 (PP1). Treatment of OCD-like grooming behavior in Slitrk5, SAPAP3, and laser-stimulated mice with one dose of RG108 (DNA methyltransferase inhibitor), lead to marked symptom improvement lasting for at least one week as well as complete reversal of anomalous changes in circuitry and PP1 gene methylation.
A Phenotypic Structure and Neural Correlates of Compulsive Behaviors in Adolescents
A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents' psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p ≤ 0.001), conscientiousness (r=0.171; p ≤ 0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p ≤ 0.001), novelty-seeking (r=0.451; p ≤ 0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum.
Can we predict development of impulsive–compulsive behaviours in Parkinson’s disease?
ObjectiveTo determine clinical and structural imaging predictors of impulsive–compulsive behaviour (ICB) in de novo Parkinson’s disease (PD).MethodsFrom a cohort of 1116 subjects from the Parkinson’s Progression Marker Initiative database, we created a subcohort of 42 de novo PD without ICB at baseline with available 3T MRI and who developed ICB during follow-up. PD-ICB were matched for age, gender and disease duration to 42 patients with PD without ICB over follow-up (PD-no-ICB) and 42 healthy controls (HCs). Baseline demographic and clinical predictors of ICB were analysed. For the longitudinal neuroimaging analysis, we selected 27 patients with PD-ICB with available neuroimaging after ICB onset, who were matched with 32 PD-no-ICB and 35 HCs. Baseline and longitudinal structural differences were compared using voxel-based morphometry and voxel-based quantification.ResultsPeople who went on to develop ICB had more severe anxiety, worse autonomic and global cognitive functions and were more likely to have rapid eye movement sleep behaviour disorder. Logistic regression confirmed that worse autonomic and cognitive functions were predictors of ICB. We could not find any morphological feature on baseline MRI that predicted later onset of ICB. When comparing PD groups at follow-up, a small region of increased atrophy in the anterior limb of the left internal capsule adjacent to the head of the left caudate nucleus was found in PD-ICB, but not surviving correction for multiple comparisons.ConclusionsWorse autonomic and cognitive functions predict development of ICB at the time of PD diagnosis. Structural imaging fails to identify morphological features associated with the development of ICB.
White Matter Abnormalities in Skin Picking Disorder: A Diffusion Tensor Imaging Study
Skin picking disorder (SPD) is characterized by the repetitive and compulsive picking of skin, resulting in tissue damage. Neurocognitive findings in SPD implicate difficulty with response inhibition (suppression of pre-potent motor responses). This function is dependent on the integrity of the right frontal gyrus and the anterior cingulate cortices, and white-matter tracts connecting such neural nodes. It was hypothesized that SPD would be associated with reduced fractional anisotropy in regions implicated in top-down response suppression, particularly white-matter tracts in proximity of the bilateral anterior cingulate and right frontal (especially orbitofrontal and inferior frontal) cortices. 13-subjects meeting proposed SPD criteria for DSM-5 free from other current psychiatric comorbidities, and 12 healthy comparison subjects underwent MRI with a 3-T system. Between-group comparisons of imaging data underwent voxelwise analysis with permutation modeling and cluster correction. Fractional anisotropy (measured using diffusion tensor imaging) was the primary outcome measure. Subjects with SPD exhibited significantly reduced fractional anisotropy in tracts distributed bilaterally, which included the anterior cingulate cortices. Fractional anisotropy did not correlate significantly with SPD disease severity, or depressive or anxiety scores. These findings implicate disorganization of white-matter tracts involved in motor generation and suppression in the pathophysiology of SPD, findings remarkably similar to those previously reported in trichotillomania. This study adds considerable support to the notion that-in addition to the phenomenological and comorbid overlap between SPD and trichotillomania-these disorders likely share overlapping neurobiology.
Neuroendocrinological mechanisms underlying impulsive and compulsive behaviors in obesity: a narrative review of fMRI studies
Impulsivity and compulsivity are multidimensional constructs that are increasingly considered determinants of obesity. Studies using functional magnetic resonance imaging (fMRI) have provided insight on how differences in brain response during tasks exploring facets of impulsivity and compulsivity relate to the ingestive behaviors that support the etiology and maintenance of obesity. In this narrative review, we provide an overview of neuroimaging studies exploring impulsivity and compulsivity factors as they relate to weight status. Special focus will be placed on studies examining the impulsivity-related dimensions of attentional bias, delayed gratification and emotion regulation. Discussions of compulsivity within the context of obesity will be restricted to fMRI studies investigating habit formation and response flexibility under shifting contingencies. Further, we will highlight neuroimaging research demonstrating how alterations in neuroendocrine functioning are linked to excessive food intake and may serve as a driver of the impulsive and compulsive behaviors observed in obesity. Research on the associations between brain response with neuroendocrine factors, such as insulin, peptide YY (PYY), leptin, ghrelin and glucagon-like peptide 1 (GLP-1), will be reviewed.
Lesions of the thalamic reuniens cause impulsive but not compulsive responses
On account of its strong efferent projections to the hippocampus, recent animal studies have emphasized an important role for the nucleus reuniens (NRe) of the midline thalamus in spatial memory. However, by virtue of its reciprocal connections with the orbital and ventromedial prefrontal cortex, the NRe may also be involved in aspects of executive inhibition. To date, there has been no systematic attempt to examine the role of the NRe in inhibitory mechanisms of response control. Accordingly, we compared rats with neurotoxic lesions of the NRe with sham surgery controls on performance of the 5-choice reaction time task, a test of visuospatial attention and inhibitory control. When tested post-operatively, rats with NRe lesions were unable to actively inhibit premature responses when the intertrial interval was varied. However, the same rats with NRe lesions showed normal inhibition of perseverative responses, and under some conditions were less perseverative than shams. The NRe lesion was also associated with a reduction in omissions and fast reward collection latencies, which persisted 2 months following surgery. The NRe lesion did not affect response accuracy or latency to respond correctly throughout the course of experimental testing. Together, these results signify the important role of the NRe in impulse inhibition, especially when slight changes are made to the temporal demands of the environment, and reveal the potential contribution of the NRe in motivational processes.