Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
142
result(s) for
"Content-based filtering"
Sort by:
A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields
2022
This paper reviews the research trends that link the advanced technical aspects of recommendation systems that are used in various service areas and the business aspects of these services. First, for a reliable analysis of recommendation models for recommendation systems, data mining technology, and related research by application service, more than 135 top-ranking articles and top-tier conferences published in Google Scholar between 2010 and 2021 were collected and reviewed. Based on this, studies on recommendation system models and the technology used in recommendation systems were systematized, and research trends by year were analyzed. In addition, the application service fields where recommendation systems were used were classified, and research on the recommendation system model and recommendation technique used in each field was analyzed. Furthermore, vast amounts of application service-related data used by recommendation systems were collected from 2010 to 2021 without taking the journal ranking into consideration and reviewed along with various recommendation system studies, as well as applied service field industry data. As a result of this study, it was found that the flow and quantitative growth of various detailed studies of recommendation systems interact with the business growth of the actual applied service field. While providing a comprehensive summary of recommendation systems, this study provides insight to many researchers interested in recommendation systems through the analysis of its various technologies and trends in the service field to which recommendation systems are applied.
Journal Article
A systematic review and research perspective on recommender systems
2022
Recommender systems are efficient tools for filtering online information, which is widespread owing to the changing habits of computer users, personalization trends, and emerging access to the internet. Even though the recent recommender systems are eminent in giving precise recommendations, they suffer from various limitations and challenges like scalability, cold-start, sparsity, etc. Due to the existence of various techniques, the selection of techniques becomes a complex work while building application-focused recommender systems. In addition, each technique comes with its own set of features, advantages and disadvantages which raises even more questions, which should be addressed. This paper aims to undergo a systematic review on various recent contributions in the domain of recommender systems, focusing on diverse applications like books, movies, products, etc. Initially, the various applications of each recommender system are analysed. Then, the algorithmic analysis on various recommender systems is performed and a taxonomy is framed that accounts for various components required for developing an effective recommender system. In addition, the datasets gathered, simulation platform, and performance metrics focused on each contribution are evaluated and noted. Finally, this review provides a much-needed overview of the current state of research in this field and points out the existing gaps and challenges to help posterity in developing an efficient recommender system.
Journal Article
Research-paper recommender systems: a literature survey
2016
In the last 16 years, more than 200 research articles were published about
research-paper recommender systems
. We reviewed these articles and present some descriptive statistics in this paper, as well as a discussion about the major advancements and shortcomings and an overview of the most common recommendation concepts and approaches. We found that more than half of the recommendation approaches applied content-based filtering (55 %). Collaborative filtering was applied by only 18 % of the reviewed approaches, and graph-based recommendations by 16 %. Other recommendation concepts included stereotyping, item-centric recommendations, and hybrid recommendations. The content-based filtering approaches mainly utilized papers that the users had authored, tagged, browsed, or downloaded. TF-IDF was the most frequently applied weighting scheme. In addition to simple terms, n-grams, topics, and citations were utilized to model users’ information needs. Our review revealed some shortcomings of the current research. First, it remains unclear which recommendation concepts and approaches are the most promising. For instance, researchers reported different results on the performance of content-based and collaborative filtering. Sometimes content-based filtering performed better than collaborative filtering and sometimes it performed worse. We identified three potential reasons for the ambiguity of the results. (A) Several evaluations had limitations. They were based on strongly pruned datasets, few participants in user studies, or did not use appropriate baselines. (B) Some authors provided little information about their algorithms, which makes it difficult to re-implement the approaches. Consequently, researchers use different implementations of the same recommendations approaches, which might lead to variations in the results. (C) We speculated that minor variations in datasets, algorithms, or user populations inevitably lead to strong variations in the performance of the approaches. Hence, finding the most promising approaches is a challenge. As a second limitation, we noted that many authors neglected to take into account factors other than accuracy, for example overall user satisfaction. In addition, most approaches (81 %) neglected the user-modeling process and did not infer information automatically but let users provide keywords, text snippets, or a single paper as input. Information on runtime was provided for 10 % of the approaches. Finally, few research papers had an impact on research-paper recommender systems in practice. We also identified a lack of authority and long-term research interest in the field: 73 % of the authors published no more than one paper on research-paper recommender systems, and there was little cooperation among different co-author groups. We concluded that several actions could improve the research landscape: developing a common evaluation framework, agreement on the information to include in research papers, a stronger focus on non-accuracy aspects and user modeling, a platform for researchers to exchange information, and an open-source framework that bundles the available recommendation approaches.
Journal Article
Hybrid recommender system for tourism based on big data and AI: A conceptual framework
by
Nafis, Fouad
,
Aghoutane, Badraddine
,
Yahyaouy, Ali
in
Artificial intelligence
,
Big Data
,
collaborative filtering
2021
With the development of the Internet, technology, and means of communication, the production of tourist data has multiplied at all levels (hotels, restaurants, transport, heritage, tourist events, activities, etc.), especially with the development of Online Travel Agency (OTA). However, the list of possibilities offered to tourists by these Web search engines (or even specialized tourist sites) can be overwhelming and relevant results are usually drowned in informational \"noise\", which prevents, or at least slows down the selection process. To assist tourists in trip planning and help them to find the information they are looking for, many recommender systems have been developed. In this article, we present an overview of the various recommendation approaches used in the field of tourism. From this study, an architecture and a conceptual framework for tourism recommender system are proposed, based on a hybrid recommendation approach. The proposed system goes beyond the recommendation of a list of tourist attractions, tailored to tourist preferences. It can be seen as a trip planner that designs a detailed program, including heterogeneous tourism resources, for a specific visit duration. The ultimate goal is to develop a recommender system based on big data technologies, artificial intelligence, and operational research to promote tourism in Morocco, specifically in the Daraâ-Tafilalet region.
Journal Article
A Comprehensive Study of Recommender Systems for the Internet of Things
by
Gupta, Deepali
,
Mudita
in
Collaborative filtering
,
Content-Aware filtering
,
Content-based filtering
2021
Internet of Things (IoT) is an advancing technology that is a network of many smart devices connected together to provide services to various application domains such as smart offices, health monitoring, agriculture, etc. IoT-based recommendation technologies are becoming one of the key requirements that will recommend future IoT solutions. A review of existing recommendation technologies in the vibrant field of IoT is discussed in this paper. The main aim of this paper is to present a comprehensive analysis of existing literature on recommendation approaches. Several issues of applying recommendation systems to IoT are also discussed. Nearly 1000 research papers have been considered for analyses which are published by ACM, Springer, IEEE and Science Direct from 2011 to 2017. Finally, the recent research trends are spotted for future researchers intended to work in the recommendation-based IoT domain. Moreover, this paper also envisages the future of the Recommender System (RS) that opens up the newest research directions for young researchers.
Journal Article
Automatic recommendation system based on hybrid filtering algorithm
2022
Web recommendation systems are ubiquitous in the world used to overcome the product overload on e-commerce websites. Among various filtering algorithms, Collaborative Filtering and Content Based Filtering are the best recommendation approaches. Being popular, these filtering approaches still suffer from various limitations such as Cold Start Problem, Sparsity and Scalability all of which lead to poor recommendations. In this paper, we propose a hybrid system-based book recommendation system that anticipates recommendations. The proposed system is a mixture of collaborative filtering and content based filtering which can be explained in three phases: In the first phase, it identifies the users who are analogous to the active user by matching users' profiles. In the second phase, it chooses the candidate's item for every similar user by obtaining vectors Vc and Vm corresponding to the user's profile and the item contents. After calculating the prediction value for each item using the Resnick prediction equation, items are suggested to the target user in the final phase. We compared our proposed system to current state-of-the-art recommendation models, such as collaborative filtering and content-based filtering. It is shown in the experimental section that the proposed hybrid filtering approach outperforms conventional collaborative filtering and content-based filtering.
Journal Article
Revolutionizing recommendations a survey: a comprehensive exploration of modern recommender systems
The rapid proliferation of digital information and online services has fundamentally reshaped user interactions with websites, necessitating the evolution of recommender systems. These systems, crucial in domains such as e-commerce, education, and scientific research, serve to enhance user engagement and satisfaction through personalized recommendations. However, it comes up with new challenges, including information overload, prompting the development of recommender systems that can efficiently navigate this vast group to offer more personalized and relevant suggestions. This survey paper explores the dynamic opinion of recommendation systems, addressing the limitations of traditional approaches, the emergence of deep learning models, and the extended potential for additional data. By investigating various recommendation systems and the evolving role of deep learning, this paper illuminates the path toward more accurate, personalized, and effective recommender systems, considering challenges like sparse data and improved context-based recommendations. The study encompasses three primary recommendation approaches: collaborative filtering, content-based filtering, and hybrid systems. It further investigates into the transformation brought about by deep learning models, showcasing how these models intricate user-item interactions. This survey offers a comprehensive exploration of recommendation systems and their advancements in the digital era, providing insights into the future of personalized content delivery.
Journal Article
A deep learning based hybrid recommendation model for internet users
by
Sarhan, Shahenda
,
Elmougy, Samir
,
Adrousy, Waleed El
in
639/705/117
,
639/705/794
,
Collaboration
2024
Recommendation Systems (RS) play a crucial role in delivering personalized item suggestions, yet traditional methods often struggle with accuracy, scalability, efficiency, and cold-start challenges. This paper presents the HRS-IU-DL model, a novel hybrid recommendation system that advances the field by integrating multiple sophisticated techniques to enhance both accuracy and relevance. The proposed model uniquely combines user-based and item-based Collaborative Filtering (CF) to effectively analyze user-item interactions, Neural Collaborative Filtering (NCF) to capture complex non-linear relationships, and Recurrent Neural Networks (RNN) to identify sequential patterns in user behavior. Furthermore, it incorporates Content-Based Filtering (CBF) with Term Frequency-Inverse Document Frequency (TF-IDF) for in-depth analysis of item attributes. A key contribution of this work is the innovative fusion of CF, NCF, RNN, and CBF, which collectively address significant challenges such as data sparsity, the cold-start problem, and the increasing demand for personalized recommendations. Additionally, the model employs N-Sample techniques to recommend the top 10 similar items based on user-specified genres, leveraging methods like Cosine Similarity, Singular Value Decomposition (SVD), and TF-IDF. The HRS-IU-DL model is rigorously evaluated on the publicly available Movielens 100k dataset using train-test splits. Performance is assessed using metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Precision, and Recall. The results demonstrate that the HRS-IU-DL model not only outperforms state-of-the-art approaches but also achieves substantial improvements across these evaluation metrics, highlighting its contribution to the advancement of RS technology.
Journal Article
Social movie recommender system based on deep autoencoder network using Twitter data
by
Tahmasebi, Hossein
,
Ravanmehr, Reza
,
Mohamadrezaei, Rezvan
in
Artificial Intelligence
,
Collaboration
,
Computational Biology/Bioinformatics
2021
Recommender systems attempt to provide effective suggestions to each user based on their interests and behaviors. These recommendations usually match the personal user preferences and assist them in the decision-making process. With the ever-expanding growth of information on the web, online education systems, e-commerce, and, eventually, the emergence of social networks, the necessity of developing such systems is unavoidable. Collaborative filtering and content-based filtering are among the most important techniques used in recommender systems. Meanwhile, with the significant advances in deep learning in recent years, the use of this technology has been widely observed in recommender systems. In this study, a hybrid social recommender system utilizing a deep autoencoder network is introduced. The proposed approach employs collaborative and content-based filtering, as well as users’ social influence. The social influence of each user is calculated based on his/her social characteristics and behaviors on Twitter. For the evaluation purpose, the required datasets have been collected from MovieTweetings and Open Movie Database. The evaluation results show that the accuracy and effectiveness of the proposed approach have been improved compared to the other state-of-the-art methods.
Journal Article
A Brief Analysis of Collaborative and Content Based Filtering Algorithms used in Recommender Systems
by
Prasad, Dr. D. Durga
,
Bajjuri, Usha Rani
,
Anandarao, Sarvani
in
Algorithms
,
Collaboration
,
Collaborative Filtering
2020
In the modern age and many prestigious applications use the recommendation method to play an important role. The system of recommendations collected apps, built a global village and provided enough information for development. This paper presents an overview of the approaches and techniques produced in the recommendation framework for collaborative filtering. Collaborative filtering, material and hybrid methods were the method of recommendation. In producing personalised recommendation the technique of collaborative filtering is particularly effective. There have been several algorithms over ten years of study, but no distinctions have been made between the various strategies. Indeed, there is not yet a widely agreed way to test a collaborative filtering algorithm. In this work we compare various literature techniques and review each one's characteristics to emphasise their key strengths and weaknesses.
Journal Article