MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Automatic recommendation system based on hybrid filtering algorithm
Automatic recommendation system based on hybrid filtering algorithm
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Automatic recommendation system based on hybrid filtering algorithm
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Automatic recommendation system based on hybrid filtering algorithm
Automatic recommendation system based on hybrid filtering algorithm

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Automatic recommendation system based on hybrid filtering algorithm
Automatic recommendation system based on hybrid filtering algorithm
Journal Article

Automatic recommendation system based on hybrid filtering algorithm

2022
Request Book From Autostore and Choose the Collection Method
Overview
Web recommendation systems are ubiquitous in the world used to overcome the product overload on e-commerce websites. Among various filtering algorithms, Collaborative Filtering and Content Based Filtering are the best recommendation approaches. Being popular, these filtering approaches still suffer from various limitations such as Cold Start Problem, Sparsity and Scalability all of which lead to poor recommendations. In this paper, we propose a hybrid system-based book recommendation system that anticipates recommendations. The proposed system is a mixture of collaborative filtering and content based filtering which can be explained in three phases: In the first phase, it identifies the users who are analogous to the active user by matching users' profiles. In the second phase, it chooses the candidate's item for every similar user by obtaining vectors Vc and Vm corresponding to the user's profile and the item contents. After calculating the prediction value for each item using the Resnick prediction equation, items are suggested to the target user in the final phase. We compared our proposed system to current state-of-the-art recommendation models, such as collaborative filtering and content-based filtering. It is shown in the experimental section that the proposed hybrid filtering approach outperforms conventional collaborative filtering and content-based filtering.
Publisher
Springer Nature B.V