Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
171,550 result(s) for "Coronavirus infections."
Sort by:
The COVID-19 virus
Factual yet simple text about the rise of COVID-19, how it spreads, and steps we can take to avoid spreading disease to others. Colorful diagrams show how viruses enter a host and replicate in cells, and explain how lower-respiratory illnesses affect people.
Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults
In March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 1 , a pandemic. With rapidly accumulating numbers of cases and deaths reported globally 2 , a vaccine is urgently needed. Here we report the available safety, tolerability and immunogenicity data from an ongoing placebo-controlled, observer-blinded dose-escalation study (ClinicalTrials.gov identifier NCT04368728) among 45 healthy adults (18–55 years of age), who were randomized to receive 2 doses—separated by 21 days—of 10 μg, 30 μg or 100 μg of BNT162b1. BNT162b1 is a lipid-nanoparticle-formulated, nucleoside-modified mRNA vaccine that encodes the trimerized receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2. Local reactions and systemic events were dose-dependent, generally mild to moderate, and transient. A second vaccination with 100 μg was not administered because of the increased reactogenicity and a lack of meaningfully increased immunogenicity after a single dose compared with the 30-μg dose. RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second dose. Geometric mean neutralizing titres reached 1.9–4.6-fold that of a panel of COVID-19 convalescent human sera, which were obtained at least 14 days after a positive SARS-CoV-2 PCR. These results support further evaluation of this mRNA vaccine candidate. In a dose-escalation study of the COVID-19 RNA vaccine BNT162b1 in 45 healthy adults, RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second vaccine dose.
Seasonal coronavirus protective immunity is short-lasting
A key unsolved question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of acquired immunity. Insights from infections with the four seasonal human coronaviruses might reveal common characteristics applicable to all human coronaviruses. We monitored healthy individuals for more than 35 years and determined that reinfection with the same seasonal coronavirus occurred frequently at 12 months after infection. The durability of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. Lessons from seasonal coronavirus infections in humans show that reinfections can occur within 12 months of initial infection, coupled with changes in levels of virus-specific antibodies.
Digital contact tracing for pandemic response : ethics and governance guidance
\"Technologies of digital contact tracing have been used in several countries to help in the surveillance and containment of COVID-19. These technologies have promise, but they also raise important ethical, legal, and governance challenges that require comprehensive analysis in order to support decision-making. Johns Hopkins University recognized the importance of helping to guide this process and organized an expert group with members from inside and outside the university. This expert group urges a stepwise approach that prioritizes the alignment of technology with public health needs, building choice into design architecture and capturing real-world results and impacts to allow for adjustments as required\"-- Provided by publisher.
A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19
Investigators in China report the results of an open-label, randomized clinical trial of lopinavir–ritonavir for the treatment of Covid-19 in 199 infected adult patients. The primary end point was the time to clinical improvement.
Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18–55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493–1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96–317; n=127), and were boosted following a second dose (639 EU, 360–792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.
Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study
ObjectivesTo prospectively investigate in patients with severe COVID-19-associated cytokine storm syndrome (CSS) whether an intensive course of glucocorticoids with or without tocilizumab accelerates clinical improvement, reduces mortality and prevents invasive mechanical ventilation, in comparison with a historic control group of patients who received supportive care only.MethodsFrom 1 April 2020, patients with COVID-19-associated CSS, defined as rapid respiratory deterioration plus at least two out of three biomarkers with important elevations (C-reactive protein >100 mg/L; ferritin >900 µg/L; D-dimer >1500 µg/L), received high-dose intravenous methylprednisolone for 5 consecutive days (250 mg on day 1 followed by 80 mg on days 2–5). If the respiratory condition had not improved sufficiently (in 43%), the interleukin-6 receptor blocker tocilizumab (8 mg/kg body weight, single infusion) was added on or after day 2. Control patients with COVID-19-associated CSS (same definition) were retrospectively sampled from the pool of patients (n=350) admitted between 7 March and 31 March, and matched one to one to treated patients on sex and age. The primary outcome was ≥2 stages of improvement on a 7-item WHO-endorsed scale for trials in patients with severe influenza pneumonia, or discharge from the hospital. Secondary outcomes were hospital mortality and mechanical ventilation.ResultsAt baseline all patients with COVID-19 in the treatment group (n=86) and control group (n=86) had symptoms of CSS and faced acute respiratory failure. Treated patients had 79% higher likelihood on reaching the primary outcome (HR: 1.8; 95% CI 1.2 to 2.7) (7 days earlier), 65% less mortality (HR: 0.35; 95% CI 0.19 to 0.65) and 71% less invasive mechanical ventilation (HR: 0.29; 95% CI 0.14 to 0.65). Treatment effects remained constant in confounding and sensitivity analyses.ConclusionsA strategy involving a course of high-dose methylprednisolone, followed by tocilizumab if needed, may accelerate respiratory recovery, lower hospital mortality and reduce the likelihood of invasive mechanical ventilation in COVID-19-associated CSS.