Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,368
result(s) for
"Cortex (olfactory)"
Sort by:
Structure and flexibility in cortical representations of odour space
2020
The cortex organizes sensory information to enable discrimination and generalization
1
–
4
. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus
5
–
7
. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.
Both piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships, but cortex reshapes relational information inherited from the sensory periphery to enhance odour generalization and to reflect experience.
Journal Article
Representational drift in primary olfactory cortex
by
Fink, Andrew J. P.
,
Schoonover, Carl E.
,
Ohashi, Sarah N.
in
631/378/1595/2618
,
631/378/2624/1704
,
631/378/3917
2021
Perceptual constancy requires the brain to maintain a stable representation of sensory input. In the olfactory system, activity in primary olfactory cortex (piriform cortex) is thought to determine odour identity
1
–
5
. Here we present the results of electrophysiological recordings of single units maintained over weeks to examine the stability of odour-evoked responses in mouse piriform cortex. Although activity in piriform cortex could be used to discriminate between odorants at any moment in time, odour-evoked responses drifted over periods of days to weeks. The performance of a linear classifier trained on the first recording day approached chance levels after 32 days. Fear conditioning did not stabilize odour-evoked responses. Daily exposure to the same odorant slowed the rate of drift, but when exposure was halted the rate increased again. This demonstration of continuous drift poses the question of the role of piriform cortex in odour perception. This instability might reflect the unstructured connectivity of piriform cortex
6
–
12
, and may be a property of other unstructured cortices.
All odours elicit a unique pattern of neuronal activity in primary olfactory cortex but these patterns drift over time, posing a problem for the perceptual constancy of odours.
Journal Article
Stepwise pathways from the olfactory cortex to central hub regions in the human brain
2024
The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default‐mode network (DMN). The DMN regions are believed to be critical for representing concepts and, hence, language acquisition and use. Although prior research has established that major senses are placed at a similar distance from the DMN—five to six connective steps—it is still unknown how the olfactory system functionally connects to the large‐scale cortical hubs of the human brain. In this study, we investigated the connective distance from olfactory seed areas to the DMN. The connective distance involves a series of three to four intermediate steps. Furthermore, we parcellated the olfactory cortical subregions and found evidence of two distinct olfactory pathways. One emerges from the anterior olfactory nucleus and olfactory tubercle; it involves early access to the orbitofrontal cortex, known for processing reward and multisensory signals. The other emerges from the frontal and temporal regions of the piriform cortex, involving the anterior insula, intermediate frontal sulcus, and parietal operculum. The results were confirmed in a replication cohort. Our results provide evidence that olfaction has unique early access to the central cortical networks via dual pathways. Olfaction has unique early access to central cortical networks via dual connectivity pathways: evidence from a resting functional magnetic resonance imaging approach.
Journal Article
Hippocampal projections to the anterior olfactory nucleus differentially convey spatiotemporal information during episodic odour memory
2018
The hippocampus is essential for representing spatiotemporal context and establishing its association with the sensory details of daily life to form episodic memories. The olfactory cortex in particular shares exclusive anatomical connections with the hippocampus as a result of their common evolutionary history. Here we selectively inhibit hippocampal projections to the anterior olfactory nucleus (AON) during behavioural tests of contextually cued odour recall. We find that spatial odour memory and temporal odour memory are independently impaired following inhibition of distinct, topographically organized hippocampal-AON pathways. Our results not only reveal a longstanding unknown function for the AON but offer new mechanistic insights regarding the representation of odours in episodic memory.
Hippocampus is necessary for integrating the context with sensory cues to retrieve memory for unique episodes. Here, the authors show that inhibiting topographically organized projections from hippocampus to the anterior olfactory nucleus independently impairs spatial and temporal odour memory recall.
Journal Article
Characterizing functional pathways of the human olfactory system
by
Zhou, Guangyu
,
Zelano, Christina
,
Kahnt, Thorsten
in
Adult
,
Anatomy, Artistic
,
Atlases as Topic
2019
The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.
Journal Article
Altered functional connectivity of primary olfactory cortex‐hippocampus‐frontal cortex in subjective cognitive decline during odor stimulation
2024
Subjective cognitive decline (SCD) is a high‐risk population in the preclinical stage of Alzheimer's disease (AD), and olfactory dysfunction is a risk factor for dementia progression. The present study aimed to explore the patterns of functional connectivity (FC) changes in the olfactory neural circuits during olfactory stimulation in SCD subjects. A total of 56 SCD subjects and 56 normal controls (NCs) were included. All subjects were assessed with a cognitive scale, an olfactory behavior test, and olfactory task‐based functional magnetic resonance imaging scanning. The FC differences in olfactory neural circuits between the two groups were analyzed by the generalized psychophysiological interaction. Additionally, we calculated and compared the activation of brain regions within the olfactory neural circuits during odor stimulation, the volumetric differences in brain regions showing FC differences between groups, and the correlations between neuroimaging indicators and olfactory behavioral and cognitive scale scores. During odor stimulation, the FC between the bilateral primary olfactory cortex (bPOC) and the right hippocampus in the SCD group was significantly reduced; while the FC between the right hippocampus and the right frontal cortex was significantly increased in the SCD group. The bPOC of all subjects showed significant activation, but no significant difference in activation between groups was found. No significant differences were observed in the volume of the brain regions within the olfactory neural circuits or in olfactory behavior between groups. The volume of the bPOC and right frontal cortex was significantly positively correlated with olfactory identification, and the volume of the right frontal cortex and right hippocampus was significantly correlated with cognitive functions. Furthermore, a significant correlation between the activation of bPOC and the olfactory threshold was found in the whole cohort. These results suggested that while the structure of the olfactory neural circuits and olfactory behavior in SCD subjects remained stable, there were significant changes observed in the FC of the olfactory neural circuits (specifically, the POC‐hippocampus‐frontal cortex neural circuits) during odor stimulation. These findings highlight the potential of FC alterations as sensitive imaging markers for identifying high‐risk individuals in the early stage of AD. Our findings showed that during odor stimulation, the subjective cognitive decline group exhibited significantly reduced functional connectivity (FC) between the bilateral primary olfactory cortex and the right hippocampus compared to the normal control group. Conversely, there was a significantly enhanced FC between the right hippocampus and the right frontal cortex.
Journal Article
A specific area of olfactory cortex involved in stress hormone responses to predator odours
2016
Exposure to predator scents triggers an instinctive fear response in mice, including a surge in blood levels of stress hormones; here, the amygdalo-piriform transition area is identified as provoking these hormonal responses.
Neural circuits responsive to predator odours
Exposure to volatile predator scents triggers an instinctive fear response in mice, including a surge in the stress hormones corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone. Such stereotyped responses are likely to be mediated by hard-wired neural circuits, but the olfactory areas involved have so far remain unknown. Here Linda Buck and colleagues identify the amygdalo-piriform transition area as the only olfactory area upstream of hypothalamic CRH neurons that is activated by volatile predator odours, and show that this area mediates hormonal but not behavioural fear responses to these odours.
Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger
1
,
2
. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising <5% of the olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.
Journal Article
Spatial maps in piriform cortex during olfactory navigation
2022
Odours are a fundamental part of the sensory environment used by animals to guide behaviours such as foraging and navigation
1
,
2
. Primary olfactory (piriform) cortex is thought to be the main cortical region for encoding odour identity
3
–
8
. Here, using neural ensemble recordings in freely moving rats performing an odour-cued spatial choice task, we show that posterior piriform cortex neurons carry a robust spatial representation of the environment. Piriform spatial representations have features of a learned cognitive map, being most prominent near odour ports, stable across behavioural contexts and independent of olfactory drive or reward availability. The accuracy of spatial information carried by individual piriform neurons was predicted by the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odour identity as well as spatial locations of animals, forming an odour–place map. Our results reveal a function for piriform cortex in spatial cognition and suggest that it is well-suited to form odour–place associations and guide olfactory-cued spatial navigation.
Studies using neural ensemble recordings in rats show that cells in the piriform cortex carry a spatial representation of the environment and link locations to olfactory sensory inputs.
Journal Article
Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice
by
Kostka, Johanna K.
,
Minier-Toribio, Angélica
,
Gretenkord, Sabine
in
Action Potentials - physiology
,
Animals
,
Animals, Newborn
2019
Although the developmental principles of sensory and cognitive processing have been extensively investigated, their synergy has been largely neglected. During early life, most sensory systems are still largely immature. As a notable exception, the olfactory system is functional at birth, controlling mother-offspring interactions and neonatal survival. Here, we elucidate the structural and functional principles underlying the communication between olfactory bulb (OB) and lateral entorhinal cortex (LEC)-the gatekeeper of limbic circuitry-during neonatal development. Combining optogenetics, pharmacology, and electrophysiology in vivo with axonal tracing, we show that mitral cell-dependent discontinuous theta bursts in OB drive network oscillations and time the firing in LEC of anesthetized mice via axonal projections confined to upper cortical layers. Acute pharmacological silencing of OB activity diminishes entorhinal oscillations, whereas odor exposure boosts OB-entorhinal coupling at fast frequencies. Chronic impairment of olfactory sensory neurons disrupts OB-entorhinal activity. Thus, OB activity shapes the maturation of entorhinal circuits.
Journal Article
Circuit dynamics of the olfactory pathway during olfactory learning
by
Lee, Jason Y.
,
Zhang, Yutian J.
,
Igarashi, Kei M.
in
Animals
,
Cortex (entorhinal)
,
Cortex (olfactory)
2024
The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.
Journal Article