Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
35,986 result(s) for "DNA-Binding Proteins - metabolism"
Sort by:
Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5 , in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability. The SMC5/6 complex is critical for genome stability. Here, the authors identify mutations in SLF2 and SMC5 as cause of Atelís Syndrome characterized by microcephaly, short stature, anemia, segmented chromosomes and mosaic variegated hyperploidy.
ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
PORTEC-4a: international randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer
BackgroundVaginal brachytherapy is currently recommended as adjuvant treatment in patients with high-intermediate risk endometrial cancer to maximize local control and has only mild side effects and no or limited impact on quality of life. However, there is still considerable overtreatment and also some undertreatment, which may be reduced by tailoring adjuvant treatment to the patients’ risk of recurrence based on molecular tumor characteristics.Primary objectivesTo compare the rates of vaginal recurrence in women with high-intermediate risk endometrial cancer, treated after surgery with molecular-integrated risk profile-based recommendations for either observation, vaginal brachytherapy or external pelvic beam radiotherapy or with standard adjuvant vaginal brachytherapyStudy hypothesisAdjuvant treatment based on a molecular-integrated risk profile provides similar local control and recurrence-free survival as current standard adjuvant brachytherapy in patients with high-intermediate risk endometrial cancer, while sparing many patients the morbidity of adjuvant treatment and reducing healthcare costs.Trial designA multicenter, international phase III randomized trial (2:1) of molecular-integrated risk profile-based adjuvant treatment (experimental arm) or adjuvant vaginal brachytherapy (standard arm).Major inclusion/exclusion criteriaWomen aged 18 years and over with a histological diagnosis of high-intermediate risk endometrioid endometrial cancer after total abdominal or laparoscopic hysterectomy and bilateral salpingo-oophorectomy. High-intermediate risk factors are defined as: (i) International Federation of Gynecology and Obstetrics stage IA (with invasion) and grade 3; (ii) stage IB grade 1 or 2 with age ≥60 and/or lymph-vascular space invasion; (iii) stage IB, grade 3 without lymph-vascular space invasion; or (iv) stage II (microscopic and grade 1).EndpointsThe primary endpoint is vaginal recurrence. Secondary endpoints are recurrence-free and overall survival; pelvic and distant recurrence; 5-year vaginal control (including treatment for relapse); adverse events and patient-reported symptoms and quality of life; and endometrial cancer-related healthcare costs.Sample size500 eligible and evaluable patients.Estimated dates for completing accrual and presenting resultsEstimated date for completing accrual will be late 2021. Estimated date for presentation of (first) results is expected in 2023.Trial registrationThe trial is registered at clinicaltrials.gov (NCT03469674) and ISRCTN (11659025).
Necroptosis microenvironment directs lineage commitment in liver cancer
Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here we show that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumorigenesis. Whereas a necroptosis-associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes containing identical oncogenic drivers give rise to HCC if they are surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of mouse HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage-commitment factors, a function that is conserved in humans. Together, our results provide insight into lineage commitment in liver tumorigenesis, and explain molecularly why common liver-damaging risk factors can lead to either HCC or ICC. The tumour microenvironment determines which type of liver cancer develops, with transformed hepatocytes giving rise to intrahepatic cholangiocarcinoma or hepatocellular carcinoma depending or whether they are surrounded by cells undergoing necroptosis or apoptosis.
Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner
Loop extrusion by structural maintenance of chromosomes (SMC) complexes has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.
Loss of Kmt2c or Kmt2d drives brain metastasis via KDM6A-dependent upregulation of MMP3
KMT2C and KMT2D , encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of Kmt2c or Kmt2d in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified Mmp3 as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with KMT2C- mutant TNBC have higher MMP3 levels. Downregulation or pharmacological inhibition of KDM6A diminished Mmp3 upregulation induced by the loss of histone–lysine N -methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of Mmp3 . Taken together, we identified the KDM6A–matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC. Seehawer et al. show that deletion of Kmt2c or Kmt2d promotes brain metastasis in mouse models of triple-negative breast cancer due to altered KDM6A activity and upregulated MMP3 expression, which may constitute a potential therapeutic target.
DNA Repair by ERCC1 in Non–Small-Cell Lung Cancer and Cisplatin-Based Adjuvant Chemotherapy
Tumor specimens from patients in a trial of cisplatin-based adjuvant chemotherapy for non–small-cell lung cancer were analyzed for the presence of ERCC1, an enzyme that participates in the repair of DNA damage caused by cisplatin. The absence of ERCC1 in the tumor was associated with a survival benefit from cisplatin-based adjuvant chemotherapy, whereas patients whose tumor expressed the enzyme failed to benefit from the chemotherapy. The absence of ERCC1 in the tumor was associated with a survival benefit from cisplatin-based adjuvant chemotherapy, whereas patients whose tumor expressed the enzyme failed to benefit from the chemotherapy. Lung cancer is a leading cause of death from cancer in most industrialized countries. 1 Despite undergoing complete resection of non–small-cell lung cancer, 33% of patients with pathological stage IA die within 5 years, as do 77% of those with pathological stage IIIA. 2 Clinical trials have tested the ability of adjuvant chemotherapy to improve survival after complete resection of non–small-cell lung cancer. The International Adjuvant Lung Cancer Trial (IALT) demonstrated an absolute benefit of 4.1% in 5-year overall survival among 1867 patients who were treated with adjuvant cisplatin-based chemotherapy. 3 Several other randomized studies have confirmed the benefit of postoperative platinum-based therapy . . .
Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation
Naive CD4⁺ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4⁺ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 β and γ isoforms (HP1β/γ, 2 histonebinding factors involved in gene silencing) fail to effectively signal through the PI3K–AKT–mTOR axis and switch to glycolysis. While differentiation of naive TRIM28−/− T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28−/− regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1β/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.
Investigational eIF2B activator DNL343 modulates the integrated stress response in preclinical models of TDP-43 pathology and individuals with ALS in a randomized clinical trial
Neuronal TDP-43 aggregates are a hallmark ALS pathology. The integrated stress response (ISR) occurs downstream of TDP-43 pathology and may promote neurodegeneration. Here we demonstrate that a CNS penetrant small molecule eIF2B activator inhibits the ISR in cellular models of ALS and the brain of an inducible mouse model of TDP-43 pathology, where it transiently slowed progression of locomotor deficits and neurodegeneration. ISR activation was observed in ALS patient spinal cord and CSF. The investigational drug DNL343 was advanced into Phase 1 and Phase 1b randomized, double-blind, placebo-controlled trials in healthy and ALS participants, respectively (NCT04268784/NCT05006352); the primary objective in both studies was to investigate the safety and tolerability DNL343. DNL343 demonstrated a half-life supporting once-daily dosing and showed extensive CSF distribution. DNL343 was generally well tolerated and reduced ISR biomarkers in peripheral blood mononuclear cells and CSF of ALS participants. Therefore, DNL343 is a useful investigational drug to explore the effects of ISR inhibition in ALS models and individuals with neurological diseases. Flores et al. show that brain-penetrant eIF2B agonists suppress ISR activation in cellular and mouse models of ALS and reduce ISR biomarkers in humans, enabling further clinical studies of ISR inhibition in individuals with neurological diseases
Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis
Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions. Upon starvation, cells coordinate protein disposal to recycle amino acids, although the role of the proteasome has been unclear. Here, the authors show that in the mammalian nucleus, proteasomes form condensates that dissolve following nutrient replenishment.